## Direct Lightning Strike Surge Propagation in Customer Premises Wiring

## Presented by Mick Maytum

Prepared by Mick MAYTUM, ITU-T SG5 Q2 Rapporteur, ICT Consultant & Tatjana GAZIVODA-NIKOLIC, Associate Q2 rapporteur, Bourns, Inc.



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### Direct Lightning Strike Surge Propagation in Customer Premises Wiring

This presentation analyses the contents of ITU-T K.98: Overvoltage protection guide for telecommunications equipment installed in customer premises. K.98 has over 160 pages and over 30 customer premise wiring voltage and current plots for the first 100 µs or more of the surge. A simulated lightning strike of 5/75 is used based on the findings of CIGRÉ TB 549 (2013) Lightning Parameters for Engineering Applications (covered at PEG 2014). The lightning strike is assumed to be either to the telecommunications line or the a.c. mains supply. This international document considers mains configuration types of TN-S, TN-C, TN-C-S, TT and IT. Only the TN-C (UK/DE/US) and TT (UK/DE/JP) configurations will be covered in this presentation. The effects of various earthing system lead lengths and earth electrode resistances are also analysed. The information in K.98 can be used to identify the most at risk customer premise situations for direct lightning damage.



PROTECTION ENGINEERS GROUP CONFERENCE 24-26 March 2015 Huntsville, Alabama

#### **Presentation Structure**

- Lightning Flash Coupling types
- Low-voltage AC mains configurations considered
- Lightning surge generators used for simulation
- simulation voltage limiting devices and equipment resistibility voltages
- Example circuit simulation and waveforms
- Four tables of simulation results
- Ethernet port voltage levels
- K.98 outcomes and recommendations
- Acknowledgement



PROTECTION ENGINEERS GROUP CONFERENCE 24-26 March 2015 Huntsville, Alabama

### Lightning Flash Coupling (per IEC 62305-2)





PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

## Low-voltage AC mains (IEC 60364) configurations





PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### Lightning surge generators

The PEG 2014 presentation on "CIGRÉ (Council on Large Electric Systems) Technical Bulletin (TB) 549 (2013) Lightning Parameters for Engineering Applications" gave the negative lightning median first stroke values as 30 kA, 5.5/75 and 5.2 C. K.98 uses the same 5/75 current waveshape for simulating the line lightning surge.

The lightning performance of a 200 m length of 30 pair 0.64 mm MB cable was modelled assuming a 100 kV plastic cable sheath breakdown voltage and a plastic insulated conductor breakdown to other conductors in the order of 10 kV. This resulted in a surge generator circuit of a 100 kA current source with a shunt 1  $\Omega$  resistance to earth.

The power line conductors of Live/ Neutral/ Earth in parallel are surged with a 5 kA amplitude current source with a shunt 20  $\Omega$  resistance to earth.

Both generators can produce a maximum voltage of 100 kV.



PROTECTION ENGINEERS GROUP CONFERENCE 24-26 March 2015 Huntsville, Alabama

#### Voltage limiting and equipment resistibility voltages

#### Port minimum impulse breakdown voltage

| Ports                                 | Minimum impulse voltage withstand       |
|---------------------------------------|-----------------------------------------|
| Class I mains transformer             | 2.5 kV                                  |
| Class II mains transformer            | 5.0 kV                                  |
| Floating equipment telecommunications | 2.5 kV basic, 6 kV enhanced             |
| Ethernet Port                         | 2.5 kV impulse                          |
| Mains to telecommunications           | > 5 kV for basic, > 6 kV for enhanced   |
| Mains to Ethernet                     | > 5 kV for basic, > 5 kV for enhanced   |
| <b>Telecommunications to Ethernet</b> | > 2.5 kV for basic, > 6 kV for enhanced |

#### Protector limiting voltage

| Voltage limiters                      | Limiting voltage |
|---------------------------------------|------------------|
| Telecommunications primary            | 600 V            |
| SELV                                  | 100 V            |
| Spark-gap Neutral to Protective Earth | 1.5 kV           |
| Equipment 275 V 12 kA MOV             | 800 V            |
| Live to Neutral 275 V 80 kA MOV       | 800 V            |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

### **Example Simulation Circuit**



Assumes 15 subscribers connected to telecommunication cable



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

### **Simulation Circuit Component Representations**

| Simulation Component | Represents                                                                        |  |
|----------------------|-----------------------------------------------------------------------------------|--|
| R100                 | Resistance to earth at the lightning strike point and subsequent flashover points |  |
| L16                  | Inductance of telecom cable                                                       |  |
| R101                 | Resistance of premises working pair                                               |  |
| R102                 | Resistance of premises spare pair                                                 |  |
| R103                 | Effective resistance of Telecom cable screen at premises                          |  |
| R104                 | Resistance of telecom cable of other 28 subscriber pairs in parallel              |  |
| R105                 | Effective resistance of Telecom cable screen from other 14 subscribers            |  |
| R108                 | Effective resistance of Telecom cable to earth from other 14 subscribers          |  |
| Part 2               | Premises working pair primary protector operating at 600 V                        |  |
| Part 4               | Premises spare pair primary protector operating at 600 V                          |  |
| R25 and L1           | Impedance of internal 10 metre telecom cable (Line Termination to equipment)      |  |
| R203 and C5          | Impedance of telecom input circuit                                                |  |
| R22, L15, C1 and C2  | Impedance of power transformer                                                    |  |
| MOV X7               | Equipment inherent protection MOV                                                 |  |
| R37 and C4           | Impedance of Ethernet circuit                                                     |  |
| R36 and L14          | Impedance of Ethernet cable, 10 metres long                                       |  |
| R4, R5, L12 and L13  | Impedance of flat power cable, 10 metres long, coupling factor 0.8                |  |
| L21 and L22          | Inductance of power line back to the HV/LV transformer                            |  |
| L24                  | Inductance of protective earth conductor to other premises earth electrodes       |  |
| R34                  | Resistance of subscriber earth electrode                                          |  |
| R1                   | Resistance of LV/HV transformer earth seen by the premises                        |  |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### **Example Results from simulation circuit**





PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

### Simulation table options and results

- Mains Configuration
  - TN-C or TT
- Surge to Line
  - Mains or Telecom
- Equipment type
  - Earthed or Floating
- Telecommunication primary protection
  - Fitted or Absent
- Telecommunication primary bond wire length
  - NA, 1.5 m or 10 m
- Resistance to customer premises earth
  - 100  $\Omega$ , 100  $\Omega$  + no power outlet earth, 2  $\Omega$  or No path to earth.
- Predicted Port Damage
  - Options: None, mains, telecommunications and Ethernet



PROTECTION ENGINEERS GROUP CONFERENCE 24-26 March 2015 Huntsville, Alabama

#### Table 1 – TN-C Simulation results, Surge to Mains Line

| Equipment<br>type | Primary<br>protection | Telecommunication<br>primary bond wire<br>length | Resistance to customer premises earth | Predicted Port Damage                        |
|-------------------|-----------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------|
| Earthed           | No                    | n.a.                                             | 100 Ω                                 | Telecommunications port.                     |
| Earthed           | No                    | n.a.                                             | 100 $\Omega$ + no power outlet earth  | Telecommunications port.                     |
| Earthed           | No                    | n.a.                                             | 2 Ω                                   | Telecommunications port.                     |
| Earthed           | No                    | n.a.                                             | No path to earth.                     | Telecommunications port.                     |
| Earthed           | Yes                   | 10 m                                             | 100 Ω                                 | Telecommunications port.                     |
| Earthed           | Yes                   | 1.5 m                                            | 100 Ω                                 | None.                                        |
| Earthed           | Yes                   | 10 m                                             | 100 $\Omega$ + no power outlet earth  | Telecommunications port.                     |
| Earthed           | Yes                   | 10 m                                             | 2 Ω                                   | None.                                        |
| Earthed           | Yes                   | 10 m                                             | No path to earth.                     | Telecommunications port.                     |
| Floating          | No                    | n.a.                                             | 100 Ω                                 | Mains, telecommunications and Ethernet ports |
| Floating          | No                    | n.a.                                             | 2 Ω                                   | None.                                        |
| Floating          | No                    | n.a.                                             | No path to earth.                     | Mains, telecommunications and Ethernet ports |
| Floating          | Yes                   | 10 m                                             | 100 Ω                                 | None.                                        |
| Floating          | Yes                   | 10 m                                             | 2 Ω                                   | None.                                        |
| Floating          | Yes                   | 10 m                                             | No path to earth.                     | None.                                        |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

## Table 2 – TT Simulation results, Surge to Mains Line

| Equipment<br>type | Primary<br>protection | Telecommunication<br>primary bond wire<br>length | Resistance to customer<br>premises earth | Predicted Port Damage                           |
|-------------------|-----------------------|--------------------------------------------------|------------------------------------------|-------------------------------------------------|
| Earthed           | No                    | n.a.                                             | 100 Ω                                    | Telecommunications port.                        |
| Earthed           | No                    | n.a.                                             | 100 $\Omega$ + no power outlet earth     | Telecommunications and<br>Ethernet ports        |
| Earthed           | No                    | n.a.                                             | 2 Ω                                      | Telecommunications port.                        |
| Earthed           | No                    | n.a.                                             | No path to earth.                        | Telecommunications port.                        |
| Earthed           | Yes                   | 10 m                                             | 100 Ω                                    | Telecommunications port.                        |
| Earthed           | Yes                   | 1.5 m                                            | 100 Ω                                    | Telecommunications port.                        |
| Earthed           | Yes                   | 10 m                                             | 100 $\Omega$ + no power outlet earth     | Telecommunications port.                        |
| Earthed           | Yes                   | 10 m                                             | 2 Ω                                      | None.                                           |
| Earthed           | Yes                   | 10 m                                             | No path to earth.                        | Telecommunications port.                        |
| Floating          | No                    | n.a.                                             | 100 Ω                                    | Mains, telecommunications and<br>Ethernet ports |
| Floating          | No                    | n.a.                                             | 2 Ω                                      | Mains, telecommunications and<br>Ethernet ports |
| Floating          | No                    | n.a.                                             | No path to earth.                        | Mains, telecommunications and<br>Ethernet ports |
| Floating          | Yes                   | 10 m                                             | 100 Ω                                    | None.                                           |
| Floating          | Yes                   | 10 m                                             | 2 Ω                                      | None.                                           |
| Floating          | Yes                   | 10 m                                             | No path to earth.                        | None.                                           |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

# Table 3 – TN-C Simulation results, Surge toTelecommunications Line

| Equipment | Primary    | Telecommunication | Resistance to customer               | Predicted Port Damage                           |
|-----------|------------|-------------------|--------------------------------------|-------------------------------------------------|
| type      | protection | primary bond wire | premises                             |                                                 |
|           |            | length            | earth                                |                                                 |
| Earthed   | No         | n.a.              | 100 Ω                                | Telecommunications port.                        |
| Earthed   | No         | n.a.              | 100 $\Omega$ + no power outlet earth | Telecommunications port.                        |
| Earthed   | No         | n.a.              | 2 Ω                                  | Telecommunications port.                        |
| Earthed   | No         | n.a.              | No path to earth.                    | Telecommunications port.                        |
| Earthed   | Yes        | 10 m              | 100 Ω                                | Telecommunications port                         |
| Earthed   | Yes        | 1.5 m             | 100 Ω                                | None.                                           |
| Earthed   | Yes        | 10 m              | 100 $\Omega$ + no power outlet earth | None.                                           |
| Earthed   | Yes        | 10 m              | 2 Ω                                  | Telecommunications port.                        |
| Earthed   | Yes        | 10 m              | No path to earth.                    | Telecommunications port.                        |
| Floating  | No         | n.a.              | 100 Ω                                | Mains, telecommunications and<br>Ethernet ports |
| Floating  | No         | n.a.              | 2 Ω                                  | Mains, telecommunications and<br>Ethernet ports |
| Floating  | No         | n.a.              | No path to earth.                    | Mains, telecommunications and<br>Ethernet ports |
| Floating  | Yes        | 10 m              | 100 Ω                                | None.                                           |
| Floating  | Yes        | 10 m              | 2 Ω                                  | None.                                           |
| Floating  | Yes        | 10 m              | No path to earth.                    | None.                                           |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

# Table 4 – TT Simulation results, Surge toTelecommunications Line

| Equipment | Primary    | Telecommunication | Resistance to                  | Predicted Port Damage           |
|-----------|------------|-------------------|--------------------------------|---------------------------------|
| type      | protection | primary bond wire | customer premises              |                                 |
|           |            | length            | earth                          |                                 |
| Earthed   | No         | n.a.              | 100 Ω                          | Telecommunications port.        |
| Earthed   | No         | n.a.              | 100 $\Omega$ + no power outlet | Telecommunications and Ethernet |
|           |            |                   | earth                          | ports                           |
| Earthed   | No         | n.a.              | 2 Ω                            | Telecommunications port.        |
| Earthed   | No         | n.a.              | No path to earth.              | Telecommunications port.        |
| Earthed   | Yes        | 10 m              | 100 Ω                          | Telecommunications port.        |
| Earthed   | Yes        | 1.5 m             | 100 Ω                          | None.                           |
| Earthed   | Yes        | 10 m              | 100 $\Omega$ + no power outlet | Telecommunications port.        |
|           |            |                   | earth                          |                                 |
| Earthed   | Yes        | 10 m              | 2 Ω                            | Telecommunications port.        |
| Earthed   | Yes        | 10 m              | No path to earth.              | Telecommunications port.        |
| Floating  | No         | n.a.              | 100 Ω                          | Mains, telecommunications and   |
|           |            |                   |                                | Ethernet ports                  |
|           |            |                   |                                |                                 |
| Floating  | No         | n.a.              | 2 Ω                            | Mains, telecommunications and   |
|           |            |                   |                                | Ethernet ports                  |
|           |            |                   |                                |                                 |
| Floating  | No         | n.a.              | No path to earth.              | Mains, telecommunications and   |
|           |            |                   |                                | Ethernet ports                  |
|           |            |                   |                                |                                 |
| Floating  | Yes        | 10 m              | 100 Ω                          | None.                           |
| Floating  | Yes        | 10 m              | 2 Ω                            | None.                           |
| Floating  | Yes        | 10 m              | No path to earth.              | None.                           |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### Ethernet port Damage, Surge to Mains Line

#### Table 5 – TN-C Simulation results, Surge to Mains Line

| Equipment<br>type | Primary<br>protection | Telecommunication<br>primary bond wire<br>length | Resistance to<br>customer premises<br>earth | Ethernet Port Voltage                     |
|-------------------|-----------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------|
| Floating          | No                    | n.a.                                             | 100 Ω                                       | 974 V, mains transformer flashover 15 kV  |
| Floating          | No                    | n.a.                                             | No path to earth.                           | 1.1 kV, mains transformer flashover 17 kV |

#### Table 6 – TT Simulation results, Surge to Mains Line

| Equipment | Primary    | Telecommunication | Resistance to customer               | Ethernet Port Voltage |
|-----------|------------|-------------------|--------------------------------------|-----------------------|
| type      | protection | primary bond wire | premises                             |                       |
|           |            | length            | earth                                |                       |
| Earthed   | No         | n.a.              | 100 $\Omega$ + no power outlet earth | 13.7 kV               |
| Floating  | No         | n.a.              | 100 Ω                                | 21 kV                 |
| Floating  | No         | n.a.              | 2 Ω                                  | 21 kV                 |
| Floating  | No         | n.a.              | No path to earth.                    | 22 kV                 |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### **Ethernet port Damage, Surge to Telecommunications Line**

#### Table 7 – TN-C Simulation results, Surge to Telecommunications Line

| Equipment<br>type | Primary<br>protection | Telecommunication<br>primary bond wire<br>length | Resistance to<br>customer premises<br>earth | Ethernet Port Voltage                    |
|-------------------|-----------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------|
| Floating          | No                    | n.a.                                             | 100 Ω                                       | 2.6 kV                                   |
| Floating          | No                    | n.a.                                             | 2 Ω                                         | 5.6 kV                                   |
| Floating          | No                    | n.a.                                             | No path to earth.                           | 2.3 kV, mains transformer flashover 9 kV |

#### Table 8 – TT Simulation results, Surge to Telecommunications Line

| Equipment | Primary    | Telecommunication | Resistance to customer               | Ethernet Port Voltage                |
|-----------|------------|-------------------|--------------------------------------|--------------------------------------|
| type      | protection | primary bond wire | premises                             |                                      |
|           |            | length            | earth                                |                                      |
| Earthed   | No         | n.a.              | 100 $\Omega$ + no power outlet earth | 6.3 kV                               |
| Floating  | No         | n.a.              | 100 Ω                                | 3.8 kV, mains transformer flashover  |
| Floating  | No         | n.a.              | 2 Ω                                  | 10.5 kV, mains transformer flashover |
| Floating  | No         | n.a.              | No path to earth.                    | 5.8 kV, mains transformer flashover  |



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### **K.98 outcomes and recommendations**

Only certain combinations of mains supply, equipment, primary protection, primary bonding lead length and earthing resistance are predicted to survive the applied surges, see Tables 1 through 4 on previous slides.



Where damage occurs it is recommended to fit a Multiservice Surge Protective Device, MSPD, to enhance the surge resistibility of equipment or equipment clusters. MSPDs have been covered by the PEG 2008 "Multi-service Surge **Protection Devices: Solving** the Problems of Real-Life Equipment Installations" presentation.



PROTECTION ENGINEERS GROUP CONFERENCE

24-26 March 2015 Huntsville, Alabama

#### Direct Lightning Strike Surge Propagation in Customer Premises Wiring



Phil Day spent over a year writing K.98 and simulating an enormous number of customer premises environments. This epic work merits close study to promote a better understanding of how lightning surges propagate in premises. He deserves our thanks for this work.

I hope this presentation has been interesting and will encourage you to obtain and study ITU-T Recommendation K.98 Mick Maytum Email: <u>m.j.maytum@ieee.org</u> Website: <u>http://pes-spdc.org/</u>



PROTECTION ENGINEERS GROUP CONFERENCE 24-26 March 2015 Huntsville, Alabama Latest ITU-T Surge Protection K Recommendations