Ethernet Surge Protective Device (SPD) Electrical Design Considerations

Presented by: Mick Maytum ICT Surge Protection Expert ictsp-essays.info

Contents

• Surge types

Common-mode, Differential-mode unbalanced and balanced

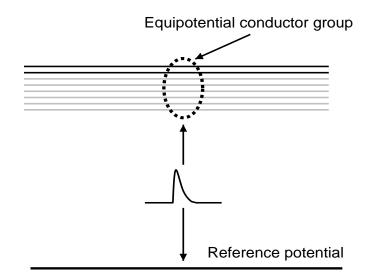
- Ethernet system
- Unexpected consequences
 Surge generators, Protective functions
- General

Port connections, Protective function

• Surge tests

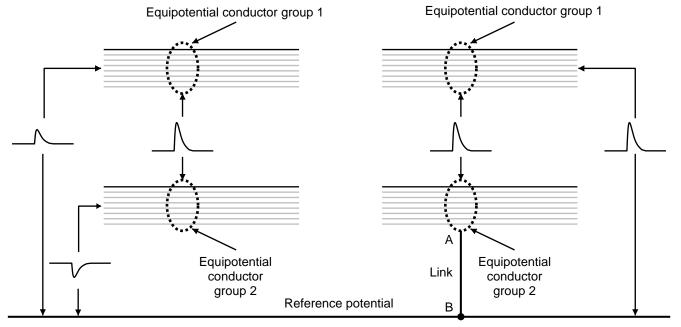
Common-mode, Differential-mode, Common-mode to differentialmode conversion, Durability, Cable screen terminal

• DC tests


Insulation resistance, Voltage drop

References

Surge Types - Common-mode voltage



surge appearing equally on all conductors of a group at a given location

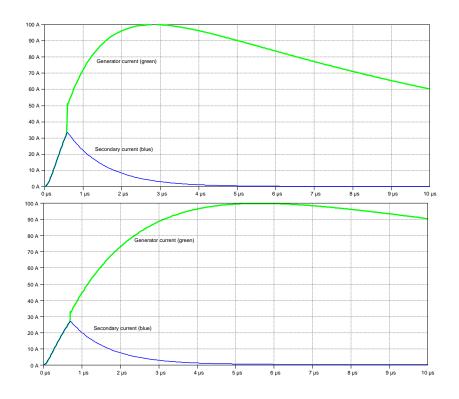
a)

b)

surge occurring between any two conductors or two groups of conductors at a given location

Surge Types - Differential-mode voltage in an Ethernet system

Ref: Surges and their mitigation Modes of PROTECTION and SURGE

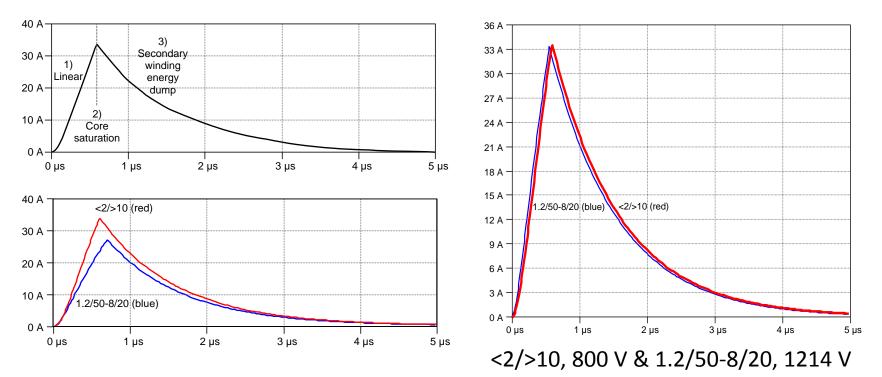

Ethernet system

- At surge frequencies the port loading is effectively resistive capacitive and non-linear.
- The port Ethernet transformer presents a d.c. load of about $1 \Omega + 1 \Omega$
- The PoE PD circuits consists of a diode bridge, avalanche diode and capacitance.
- The PoE PSE circuits consists of a regulating IC, series pass element, some protection and capacitance.
- Most of the PoE PD and PSE ICs are rated about 100 V

Unexpected consequences - Surge generators 1 Differential surge on Ethernet signal port

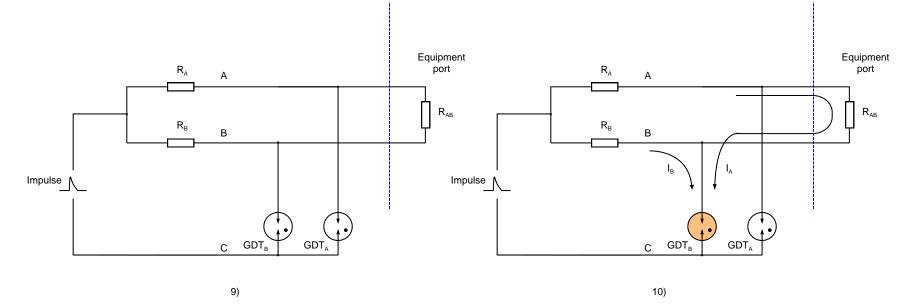
<2/>>10, 800 V, 100 A

≠ (not the same result)


1.2/50-8/20 , 800 V, 100 A

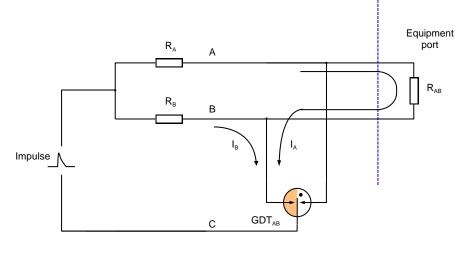
(shorted secondary)

Unexpected consequences - Surge generators 2



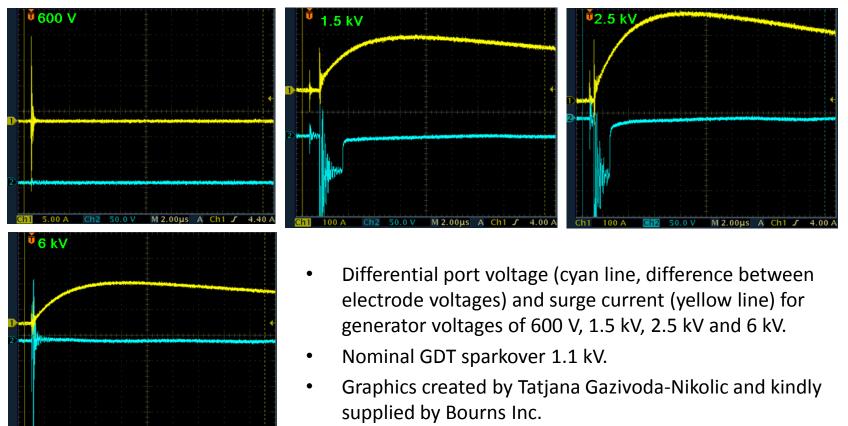
Refs: Ethernet differential surge testing - di/dt Differential surge stress reduction by Ethernet magnetics

Unexpected consequences – Gas Discharge Tubes - 1



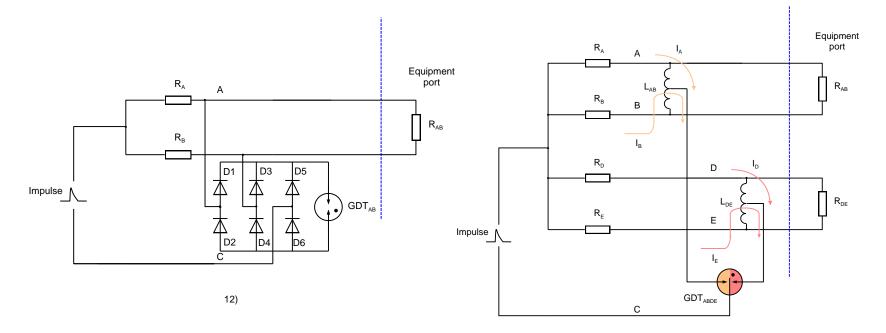
 GDT_B conducts and hogs both conductor currents, $I_A \& I_B$. The summation of GDT_B arc voltage and low voltage drop $I_A x R_{AB}$ prevents GDT_A sparkover . Equipment port suffers a differential surge of I_A .

Unexpected consequences – Gas Discharge Tubes 2


11)

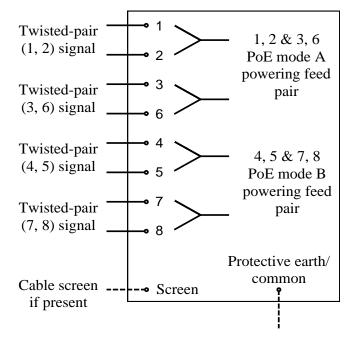
When the two outer GDT electrodes are independently surged, conduction of both halves occurs in well under 1 μ s. Low resistance Ethernet signal ports bridge the two outer electrodes lowering the non-conducting GDT section voltage. The lower electric field voltage field takes longer to attract the conducting section plasma. As a result it can take many microseconds before both GDT sections conduct. Before simultaneous conduction occurs, a major portion of the surge front is applied differentially to the equipment port.

Unexpected consequences – Gas Discharge Tubes 3


2/19/2017

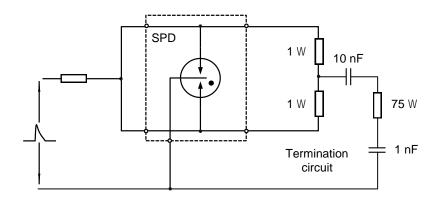
M 2.00µs A Ch1 J

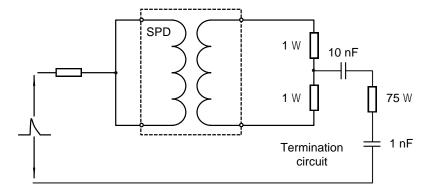
Unexpected consequences – Gas Discharge Tubes 4


Many simultaneous voltage limiting circuit solutions are available. The above two diagrams show circuits using a multi-phase diode bridge and centre-tapped choke approaches.

General - Port connections

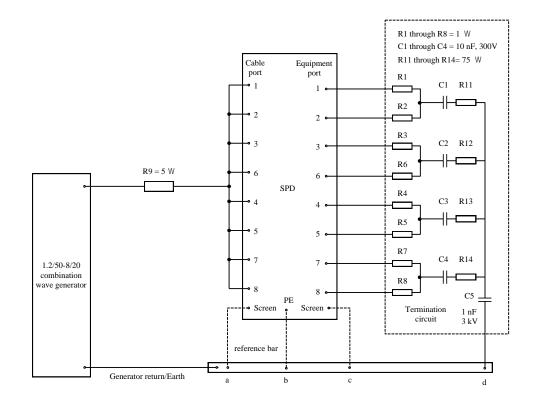
- An SPD performance specification should comprehend the connector capability and not just the internal component capability.
- A hard-wire connector may be required when the RJ45 contact currents exceed 1 kA or voltages between adjacent contacts will exceed 4 kV.


Ethernet RJ45 contact connections



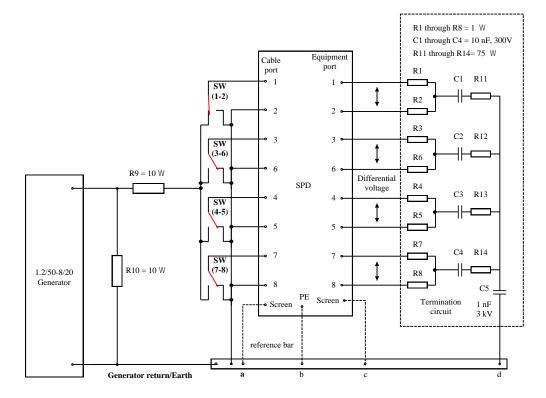
General - Protective function

A generic Ethernet SPD performance specification should try to be technology neutral on the surge protective components (SPCs) used in the SPD.


GDT common-mode voltage limiting (partial circuit for only one twisted pair)

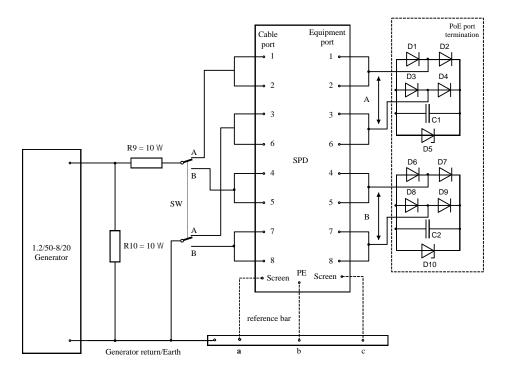
Isolating transformer common-mode voltage blocking (partial circuit for only one twisted pair)

Surge tests - Common-mode


- Common source for maximum stress on breakdown paths
- Simulated Equipment port
- Voltage limiting and isolation technologies covered
- DC tested after impulses

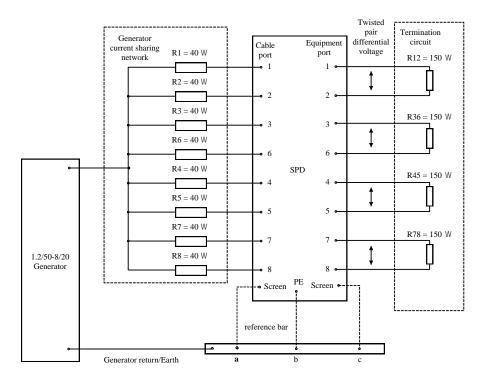
Generator charge voltage kV	Maximum equipment impulse limiting voltage kV	
2.5	1.0	
6	1.5	
12	2.0	
Manufacturer	Manufacturer	
defined	defined	

Surge tests - Differential-mode single pair


- Individual twisted pair tests
- Simulated Equipment port
- Simulated generator current division
- DC tested after impulses

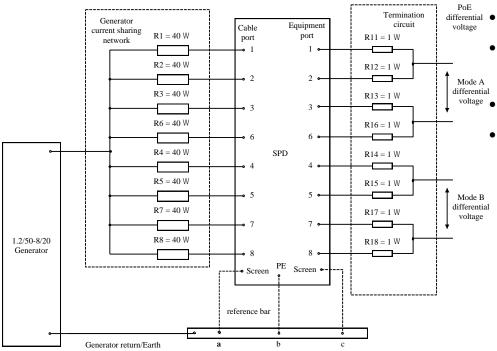
Generator charge	Preferred measured values for 1-2, 3-6, 4-5 & 7-8	
voltage	Termination	Termination
kV	peak voltage	peak current
	V	А
2.5	100	50
6	200	100
12	300	150
Manufacturer defined	Manufacturer defined	Manufacturer defined

Surge tests - Differential-mode PoE pairs


- Individual PoE pair tests
- Simulated Equipment port
- Simulated generator current division
- DC tested after impulses

Generator charge voltage kV	Preferred Peak mode A or mode B termination voltage V
2.5	90
6	95
12	100
Manufacturer defined	Manufacturer defined

Surge tests - Common-mode to differential-mode conversion – single pair

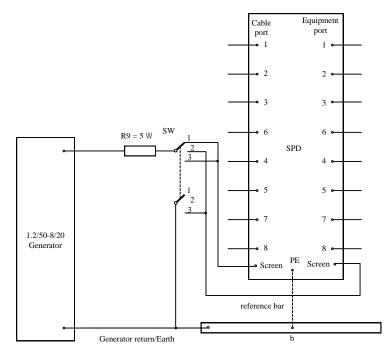

- Individual twisted pair measurements
- High impedance equipment port to measure source voltage
- Equalised generator current division
- DC tested after impulses

Generator charge voltage kV	Preferred values of differential voltage V
2.5	100
6	200
12	300
Manufacturer defined	Manufacturer defined

Surge tests - Common-mode to differential-mode conversion – PoE pairs

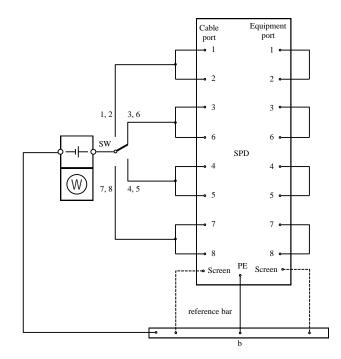
- Individual twisted pair measurements
- High impedance equipment port to measure source voltage
- Equalised generator current division
- DC tested after impulses

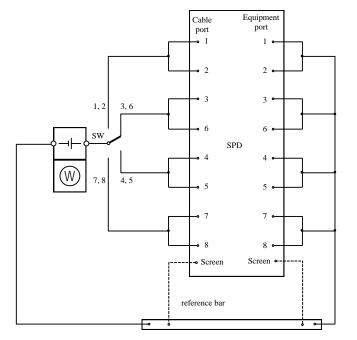
Generator charge voltage kV	Preferred values of differential voltage V
2.5	90
6	95
12	100
Manufacturer defined	Manufacturer defined


Surge tests - Durability

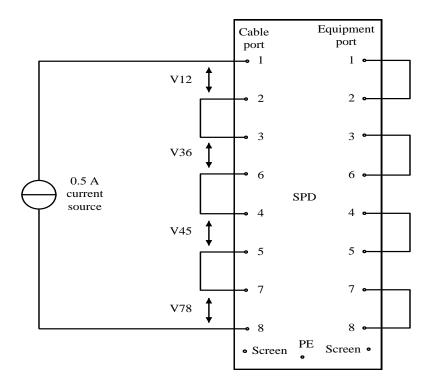
- Little attention is given to impulse durability rather than big number single impulse ratings
- Over life SPDs may experience many thousands of surges not just one big one
- Further depending on the technology the single and multi-impulse ratings maybe the same (silicon junction) or require major rating reduction due to wear-out (MOVs)
- It makes sense to know what the SPD 100 impulse or more impulse rating is

Surge tests - Cable screen terminal


- Values based on IEC 60603-7-7
- SW position 1 checks cable port screen terminal to protective earth (PE) terminal bonding
- SW position 2 checks equipment port screen terminal to protective earth (PE) terminal bonding
- SW position 3 checks cable port screen terminal to the equipment port screen terminal.


Generator charge voltage kV	Maximum screen to PE voltage, SW positions 1 & 2 V	Maximum screen to screen voltage, SW position 3 V
2.5	40	80
6	90	180
12	180	360
Manufacturer	Manufacturer	Manufacturer
defined	defined	defined

DC tests - Insulation resistance 500 V >2 M Ω


Isolating transformer SPD

Voltage limiting SPD

DC tests - Voltage drop

- Important for PoE
- Preferred value < 0.5 V
- Then total d.c. power feed mode A or B series resistance of the SPD < 0.5 Ω

References 1 of 3

Ethernet differential surge testing - di/dt Differential surge stress reduction by Ethernet magnetics Surges and their mitigation Modes of PROTECTION and SURGE Voltages and currents in Ethernet cables due to lightning strokes ETHERNET port surge testing – Test levels and configurations Ethernet Surge Protective Device (SPD) design considerations Recommendation ITU-T K.117 : Primary protector parameters for the surge protection of

equipment Ethernet ports

References 2 of 3

Ethernet ATIS PEG Conference Papers 1999-2012 CD currently available of all <u>1999-2012 papers</u>

ATIS PEG Conference 1999 Papers 10Base-T Surge Protection: Nisar Chaudhry **ATIS PEG Conference 2007 Papers** Power Over Ethernet (POE) - What is it? How to Protect it?: Mick Maytum **ATIS PEG Conference 2008 Papers** Ethernet Protection (Once it has Left the Building; Inside the Cell Site): Nisar Chaudhry **ATIS PEG Conference 2009 Papers** Electrical Protection Considerations for the Deployment of Ethernet Services in the Outside Plant: Larry Payne **ATIS PEG Conference 2010 Papers Evolving Ethernet Applications and Protection: Jim Wiese** Ethernet Protection: Nisar Chaudhry **ATIS PEG Conference 2011 Papers** A Comparison of Various Ethernet Protection Solutions: Ben Huang Lightning Damage of the Home Network Ports: Mick Maytum IEEE Std. 802.3 Ethernet ports — Types, Surge Capability and Applications: Mick Maytum **ATIS PEG Conference 2012 Papers ONT Damage: Jim Wiese**

References 3 of 3

Ethernet ATIS PEG Conference Papers 2013-2016 Currently downloadable at the <u>PEG Library</u>

ATIS PEG Conference 2013 Papers

Ground or Not to Ground Ethernet Protection, Part 2: Nisar Chaudhry Optical Network Terminations (ONTs): Lightning Damage and Standards – What's the Latest Information?: Jim Weise The Ethernet Port Maze, Part 1: Michael (Mick) Maytum The Ethernet Port Maze, Part 2: Michael (Mick) Maytum **ATIS PEG Conference 2014 Papers** Ethernet Protection-Latest Standards Work: Jim Wiese GbE Port Protection in Exposed Environments: Len Stencel **ATIS PEG Conference 2015 Papers** Power Over Ethernet (PoE) Part 1- What Is It, How It Is Used, and Lightning Field Failure Analysis: Jim Wiese Power Over Ethernet (PoE) Part 2 – Protecting PoE Against Intra-Building and OSP Environments: Tim Ardley

Latest ITU-T Surge Protection K Recommendations: Michael "Mick" Maytum

Direct Lightning Strike Surge Propagation in Customer Premises Wiring: Michael "Mick" Maytum

Lightning Surge Damage to Ethernet and POTS Ports Connected to Inside Wiring: Joe Randolph

ATIS PEG Conference 2016 Papers

Protecting PoE PSE and Ethernet to the Latest International OSP Standards: Tim Ardley