Lightning Surge Damage to Ethernet and POTS Ports Connected to Inside Wiring

> Joe Randolph Randolph Telecom, Inc.

Mystery to Solve

How are lightning surges getting onto inside wiring for Ethernet and POTS ports?

Other Contributors From PEG

- Jim Wiese
- Mick Maytum
- Al Martin

Note:

All four of us also serve on the IEEE PSES Telecom Advisory Committee

This Presentation

- Document and analyze known mechanisms
- Document and analyze new theories
- Test the new theories
- Draw some conclusions
- Offer interim design guidelines

Visual Damage to Ethernet Port

Visual Damage to POTS port

Who's Looking at This Problem?

- PEG (of course!)
- IEEE PSES Telecom Advisory Committee
- ITU (K.44, K21, K.22 standards)
- Telcordia (GR-1089 NEBS standard)
- ATIS (draft Ethernet protection standard)
- USA vendor: Adtran
- Japanese vendor: NTT

Surge Susceptibility: Ethernet vs. POTS

Key Difference

For common mode surges:

- Ethernet ports fail when subjected to over-voltage
- POTS ports fail when subjected to over-current

Observed Failures

 Ethernet ports show evidence of surges exceeding 2 kV

 POTS ports show evidence of surges exceeding 100 amps (for a 2/10 uS surge)

Common-Mode vs. Differential Surges

Earth Ground

Common-Mode vs. Differential

 Present discussion will focus on common mode surges

 Differential surges will be discussed later

Conventional Wisdom

"Cables routed entirely within a building are inherently protected from lightning."

Protection engineers have always known that this is not quite true, but high energy coupling was believed to be statistically rare.

Known Coupling Mechanisms

1) Far-field coupling from the actual lightning channel

2) Down-conductor coupling from direct strike to building

3) Ground potential rise (GPR)

Mechanism 1: Far-Field Coupling

Mechanism 2: Down-Conductor Coupling

Mechanism 3: Ground Potential Rise (GPR)

Limitations of Conventional Mechanisms

Mechanism 1: Develops only a few hundred volts

Mechanism 2: Requires direct strike to building

Mechanism 3: Requires direct strike to ground within 100 meters Also requires two different ground references

Conventional mechanisms seem insufficient to explain the high incidence of surge damage

Other Possible Coupling Mechanisms?

If we could identify the surge coupling mechanisms, we could do a better job of defining what we need to protect against:

- Open-circuit voltage ?
- Short-circuit current ?
- Waveform ?
- Common mode vs. differential ?

New Theories

Note: All three theories assume coupling of surges that originate on the AC mains

Theory 1: Catastrophic breakdown

Theory 2: Capacitive coupling

Theory 3: Interaction with multi-port surge protectors

Surges on the AC Mains

IEEE C.62.41.2

"Recommended Practice on Characterization of Surges in Low Voltage (1000V and Less) AC Power Circuits"

→ Surges in the range of 6 kV to 10 kV are possible, but infrequent, on AC mains outlets inside buildings

Theory 1 Catastrophic Breakdown Through AC Mains

Typical AC Wall Supply

Typical Ethernet Port

Typical Ethernet Transformer

Measured Failure Thresholds of Ethernet Transformers

Ethernet Transformer	Breakdown	Notes
Wurth 7090-37	8 kV	
Wurth 7090-37	7 kV	
Falco LV2001	10 kV	
Pulse H1164	Over 10 kV	
Halo TG110-RP26NY	Over 10 kV	
Pulse T1144	9 kV	
Pulse H1102	8 kV	
Pulse H2009	10 kV	
Pulse H5007NL	5 kV	Second sample was 9 kV

Measured Failure Thresholds of Ethernet Devices

Product Description	Breakdown AC to DC-In	Breakdown DC-In to Ethernet	Total Breakdown	Notes
Cisco SF-100D-05 5-port switch	Over 10 kV	6 kV	Over 16 kV	Enet Layout spacing
Zyxel GS-105B 5-port switch	Over 10 kV	8 kV	Over 18 kV	Enet Jack shield
Netgear FS105 switch	10 kV	4 kV	14 kV	Enet Smith cap
Linksys SE1500 5-port switch	8 kV	4 kV	12 kV	Enet Smith cap
TP-Link TL-SG1008D 8-port gigabit switch	Over 10 kV	7 kV	Over 17 kV	Enet Layout spacing
Trendnet TW100-S4W1CA router	10 kV	4 kV	14 kV	Enet Smith cap
Networking Products POE100 POE injector	Over 10 kV	N/A	Over 10 kV	Integrated power supply
TP-Link TL-POE150S POE injector	9 kV	4 kV	13 kV	Enet Smith cap
Linksys BEFSX41 broadband router	Over 10 kV	2 kV	Over 12 kV	Enet Jack shield

Measured Failure Thresholds of Cordless Phones

Product Description	Breakdown, AC to POTS	Notes
PanasonicKX-TGA542M cordless phone	Over 10 kV	Linear wall supply
GE 28512AE1 cordless phone	Over 10 kV	Switching wall supply
Vtech CS114 cordless phone	10 kV	Linear wall supply

Observations About Theory 1

- Typical surge tolerance for Theory 1 catastrophic breakdown:
 - 14 kV for path through Ethernet router
 - 10 kV for path through cordless phone
- Specific combinations may be far less
- But, statistically, this does not seem like a promising theory

Theory 2 Capacitive Coupling From AC Mains

Circuit Model for Theory 2

Observations About Theory 2

- Seems promising for explaining some Ethernet failures, but still requires very high voltages on AC mains (typically at least 8 kV)
- Can not be used to explain POTS damage because impulse *current* is small

Theory 3 Interaction With Multi-Port Surge Protectors

Circuit Model For Theory 3

COMBINATION SURGE PROTECTOR

Inductive Effect of a Long Ground Wire

- A single, straight wire has an inductance of approximately 2 microhenries per meter
- So, a 50 meter ground wire will be approximately 100 microhenries
- Voltage across an inductor: V = L(di/dt)
- For a 500 amp, 8 uS rise time surge through a 100 microhenry inductance for L-GND:

 $V = (100 \times 10^{-6})(500/(8 \times 10^{-6})) = 6.25 \text{ kV}$

Observations About Theory 3

- Valid mechanism that can generate observed damage on both Ethernet and POTS ports
- But, only applies when multi-port surge protectors have been installed on equipment connected to these ports

Summary of Limitations

Theory 1: Requires unusually high surge voltages on AC mains (typically more than 10 kV)

Theory 2: Looks good, but delivers only high *voltage*, not high *current*. Can not explain POTS failures. Also, requires high surge voltages on AC mains (typically more than 8 kV)

Theory 3: Looks good, delivers high voltage and high current, but only if multi-port surge protectors are installed

Common-Mode vs. Differential Surges

- The preceding discussion has focused on common mode surges
- In some cases differential surges should also be considered

Conventional Theory

- All surges on twisted-pair cables begin as common-mode surges
- Only an external mechanism (such as a surge protector) can cause a a "commonmode-to-differential conversion"

Common-Mode-to-Differential Conversion Caused by Asymmetric Triggering of External Protectors

Common-Mode-to-Differential Conversion (Continued)

- Ethernet ports can be sensitive to this:
 - Designed to pass high frequency differential signals
 - Typically not well protected for differential surges
- POTS ports generally not sensitive to this:
 - Typical POTS protection operates equally well for both common mode and differential surges

Mitigating Factors for Differential Surge Risk to Ethernet

- External Ethernet protectors are not always present
- Only certain types of external protectors will create a common-mode-to-differential conversion

These factors limit the potential hazard, but a conservative strategy would include differential protection on Ethernet ports

Interim Guidelines

- Design POTS ports to survive a 500 amp, 2/10 uS common mode surge
- Design Ethernet ports to survive a 6 kV, 2/10 uS common mode surge
- Differential surge tolerance for Ethernet ports may be desirable if external surge protectors will be used

Guidelines Not Difficult or Expensive

- POTS guideline is similar to commonly used standard for outside POTS lines
- Ethernet guideline requires three elements:
 - Improved insulation on transformer wires
 - Careful attention to capacitors that bridge barrier
 - Careful attention to spacings in board layout
- Ethernet Protection for differential surges requires careful selection of additional components

Continuing the Investigation

- Examine actual field failures to try and match their characteristics to a particular coupling mechanism
- Evaluate designs presently in the field to compare their failure rates and the failure mechanisms

These steps will help identify the surge coupling mechanisms, and will help guide development of surge requirements that match the actual field environment