Polarization Activity Monitoring of an Aerial Fiber Link in a Live Network

Presented by: **Daniel L Peterson Jr, PhD, PE** *Technical Staff Member*Verizon Communications, Inc

Agenda

- Introduction
- Optical Network/System Hierarchy
- Optical Fiber Basics
- Polarized Light Overview
- Field Measurement of Polarization Dynamics and Correlation to Environmental Conditions
- Next steps

Optical Network and System Overviews

Optical Network

- All Optical to the Access Nodes
- Wavelength Reconfigurable
 Optical Add/Drop Multiplexer
 (ROADM)

Central Office ROADM NODE

Optical System

- All Long-haul and Metro nodes are ROADMs
- Wavelength transport C-band ~1550nm
- Systems have multiple channels/wavelengths/colors separated by increments

ROADM Node

Multi-degree node – any-to-any direction

DALLAS, TX - MARCH 14 - 16, 2017

Example Optical Long-Haul Network

Long-Haul (long distance, LD) Network

- 90+ % rail-plowed 1986-1994
- Hut-spacing 25km-45km
- Direct-Buried Cables low fiber-count (24f 48f)
- High traffic systems have Eighty Eight 100G channels (wavelengths)

DALLAS, TX - MARCH 14 - 16, 2017

Access Passive Optical Network (PON)

Fiber Challenges

- Challenges are different, depending on which network (LD, metro, access)
 - line rates, modulation techniques, wavelength density, etc.
- Access Network (power meter)
 - Fiber loss
 - connector loss
- Metro Network (power meter, return loss, OTDR)
 - Fiber loss
 - Connector loss
 - Number /quality of splices return loss

Fiber Challenges - LD network

- Long-Haul Network (power meter, return loss, OTDR, chromatic dispersion, PMD)
- Many challenges minimized by coherent modulation (phase-shift keyed)
 - Amplitude and phase known
- Mixed fiber types
 - Splice loss/mismatch reflection
 - High power amplification (Raman) nonlinearities
- Number/quality of connectors (reflected power/loss)
- Extra-Long distance spans (high attenuation)
- Polarization-related impairments

Optical Fiber Basics

DALLAS, TX - MARCH 14 - 16, 2017

Dispersion in Single-Mode Optical Fiber

Intra-modal Dispersion, or Chromatic Dispersion (CD)

Different wavelengths travel at different speeds - linear

Polarization Mode Dispersion (PMD)

Different polarization modes travel at different speeds - nonlinear

Optical Fiber Attenuation

Polarization of Light Overview

Polarization

- Description of polarized light (qualitative & quantitative)
- Generating and modifying polarization
- Polarization in optical fiber

Basic Description of Light

Three basic parameters describe light:

Wavelength: λ (color)

Intensity: I (brightness)

Polarization state: S (subtle)

The polarization state is defined by path of the of E-field oscillation

DALLAS, TX - MARCH 14 - 16, 2017

<u>Linear</u>: Orientation of the plane of vibration

Elliptical: Ellipticity and orientation of the major axis

major ⁄axis

Abbreviations:

H (horizontal)

+45 (+45 $^{\circ}$ w/horizontal)

RHC (right-hand circular)

minor axis

V (vertical)

-45 (-45 $^{\circ}$ w/horizontal)

LHC (left-hand circular)

It only takes 2 numbers to describe the state of polarization of light.

State of polarization is commonly described in one of two ways: Stokes vectors/Mueller matrices and Jones vectors/matrices

DALLAS, TX - MARCH 14 - 16, 2017

Elliptical Polarization

Relative amplitudes A_x and A_y determine axis orientation (ψ).

Phase (retardance) between H and V determines ellipticity (χ).

Measurement of Light: Stokes Vectors

$$\hat{\mathbf{S}} = \begin{pmatrix} \mathbf{S}_0 \\ \mathbf{S}_1 \\ \mathbf{S}_2 \\ \mathbf{S}_3 \end{pmatrix} \quad \begin{aligned} \mathbf{S}_0 &= \text{Total intensity of light (typically "normalized" (S_0=1)} \\ \mathbf{S}_1 &= \text{Amount of light that is Horiz. or Vert. (linear)} \\ \mathbf{S}_2 &= \text{Amount of light that is } \pm 45^\circ \text{ (linear)} \\ \mathbf{S}_3 &= \text{Amount of light that is RHC or LHC} \end{aligned}$$

Stokes vectors describe the state of polarization using INTENSITY

- Easy to measure (based on observables)
- Includes "unpolarized" light
- Includes the total intensity of the light

Stokes Vectors Quiz

$$\hat{\mathbf{S}} = \begin{pmatrix} \mathbf{S}_0 \\ \mathbf{S}_1 \\ \mathbf{S}_2 \\ \mathbf{S}_3 \end{pmatrix} \begin{array}{l} \text{Normalized intensity} \\ \text{Horiz. or Vert. (linear)} \\ \pm 45^\circ \text{ (linear)} \\ \text{RHC or LHC} \end{array}$$

General
$$\hat{\mathbf{S}} = \begin{pmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \\ \sin 2\chi \end{pmatrix}$$

QUIZ: What kind of polarization states do we have here?

$$\hat{\mathbf{S}}_{?} = \begin{pmatrix} 1 \\ 0.5 \\ 0.866 \\ 0 \end{pmatrix} \qquad \hat{\mathbf{S}}_{?} = \begin{pmatrix} 1 \\ 0.482 \\ 0.835 \\ 0.286 \end{pmatrix} \qquad \hat{\mathbf{S}}_{?} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Poincare Sphere – Polarization Mapping

$$\hat{\mathbf{S}} = \begin{pmatrix} \mathbf{S}_0 \\ \mathbf{S}_1 \\ \mathbf{S}_2 \\ \mathbf{S}_3 \end{pmatrix} \begin{array}{l} \text{Normalized intensity} \\ \text{Horiz. or Vert. (linear)} \\ \pm 45^\circ \text{ (linear)} \\ \text{RHC or LHC} \end{array}$$

The Poincaré sphere:

- Plots Stokes vectors
- Linear states on the equator
- Elliptical states off the equator
- The poles are RHC and LHC

Field Measurement of Polarization Dynamics and Correlation to Environmental Conditions

Ongoing

Measurement Drivers

- Traffic interruptions measured on several Long-Haul routes
 - No outages, protection switches occurred
- Investigate polarization dynamics on different constructions
 - Buried, Aerial, Metro, Central Office (craft)
 - Large Temperature fluctuations (NE), Lightening (SE)
 - Train, subway, traffic, etc
- Started study with Lightening rich areas (SE)

Optical Ground Wire (OPGW)

- Unexplained protection switches witnessed on several Long-Haul routes containing OPGW in the SE
- Lightening can temporarily change the index of refraction (Kerr effect) as a result of the change of &

Lightening Map

OPGW route candidates

Route	Length [km]	Reported [flashes/km²/yr]	Expected lightning strikes within 0.5km radius of link [flashes] Note: This is not expected fault on system
Orlando, FL to Tallahassee, FL	513	8.1	4155
Pensacola, FL to New Orleans, LA	336 (130km OPGW)	9.8	3293
Memphis, TN to Charlotte, NC	992	4.8	4762
West Orange, NJ to Harrisburg, PA	304	2.3	699
Indianapolis, IN to Louisville, KY to Nashville, TN	480	6.0	2880

The exact distance a strike can be from the link for the resulting change in SOP to be within our sensitivity is unknown. We use 0.5km as a coarse estimate and assume that whatever the actual distance, it will be constant across all links.

Measurement Setup

Measurement Setup

DALLAS, TX - MARCH 14 - 16, 2017

Orlando-Tallahassee SOP (4/16-8/16)

Orlando-Tallahassee SOP

- Set up turn on in April 2016
 - Collecting data ~ 55% of time
- Observation
 - Majority of transients within 500 krad/s
 - Some correlations made with lightening events
 - Lightening magnitudes vs SOP transients being analyzed
 - Measurements are ongoing
 - End Date TBD (end of lightning season in FL, Oct. Nov.)

New Orleans – Pensacola SOP (8/16-2/17)

- Clusters of SOP transients measured
- Spacing between transients in cluster is roughly constant at ~16ms
- Pairs of each transient are ~3ms (RTD of events)

New Orleans – Pensacola SOP (8/16-2/17)

RTD shows distance of events 278.1 km +/- 0.66km from N.O.

- Taking the 550 measurements starting Aug. 18 we average the autocorrelations of the set to observe a single peak at about 331.12km
- Error is due to index of refraction uncertainty

New Orleans – Pensacola SOP (8/16-2/17)

Observations

- Cause Unknown mechanical?
- Hours exist where many triggers occur, followed by quiet hours.
 - We are investigated equipment PM data for patterns
- Observed angular velocities exceed 600krad/s
- Events originate near the test site in downtown New Orleans.
 - Optical distance from test site and map of fiber plant have us suspecting the North Rampart St. construction.
- Trigger settings adjusted to 10°@100krad/s
 - This should filter out the vast majority of the static transients so that we can proceed with monitoring for lightning induced transients.

Next Steps