A Report on U.S., EN & IEC Standards Development on Bonding and Grounding Infrastructure for Telecommunications

Targeting Drafts TIA 607-C and ISO/IEC 30129

William Bush MBA; NCE (wbush@ieee.org) Industry Consultant PQ, EMC, Lightning, Surge, Grd/Bond

ATIS PEG 2015 – Huntsville, AL

 TIA 607-B shopped and accepted into EN 50310 to develop draft IEC 30129

• TIA 607-B

Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises

IEC 30129

Telecommunications Bonding Networks for Buildings and Other Structures (??)

- IEC 30129 has two acceptable methodologies
 1) Resistance: based upon TIA 607-B
 - 2) Impedance: based upon EN 50130
- TIA 607-C draft intended to also meet IEC 30129 requirements

- Effectively, TIA 607 works (including the TIA/ATIS Joint Std TIA 607-A) are a basis for an Int'l standard IEC 30129
- ATIS did not rejoin TIA in the draft for TIA-607-B
- TIA 607-B developed by TIA cabling WG 42.16

- Very few of the SMEs from TIA-607 & 607-A participated in WG 42.16
- WG 42.16 heavily influenced by manufacturers and non-SMEs
- TIA 607-B developed with related information from NECA, BICSI and other TIA standards

- TIA 607-B further increases size of TBB
- TIA 607-B recommends bonding grid for computer rooms and a mesh-BN network
- TIA 607-C to add extra TBB parallel leads claiming decreased HF impedance

- What has really happened??
 - More wires and increased wire size
 - Endorsement of bonding grid added to mesh-BN
 - For all installations
 - Increased claims to lower wiring impedance
 - Dependence on resistance testing alone for verification of wiring system
 - For IEC, dependence on added parallel wires to accomplish impedance control for HF
 - ATIS SME contributions compromised

The Relevant Standards

- TIA 942; NECA/BICSI 607; BICSI 002
 Influencing standards on TIA 607-B
- TIA 607-B & addendum "Structural metal"
- ISO/IEC 30129 draft

 EN 50310 and TIA 607-B harmonization
- TIA 607-C

Noted standards activity

What BICSI, TIA & ISO/IEC are Doing With Standards and Why You Should Care

Jonathan Jew - J&M Consultants, Inc.

The organizations in this update

- ISO/IEC ISO/IEC JTC 1 SC 25 WG 3 international telecommunications cabling standards
- TIA (Telecommunications Industry Association) TR-42 – US and Canadian national telecommunications cabling standards
- BICSI international standards and guidelines for information technology systems

Noted standards activity - 2

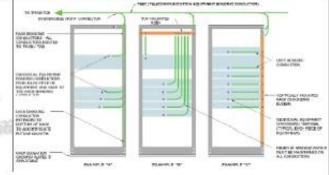
ISO/IEC In Progress

- 3rd Edition of ISO/IEC 11801 series & reorganization of related standards (-1 General, -2 Offices, -3 Industrial, -4 Homes, -5 Data Centres) estimated publication 2016 – no more Cat 3, OM1, OM2. For those who use ISO/IEC standards
- ISO/IEC 30129 Telecommunications Bonding New standard based on ANSI/TIA-607-B and CENELEC EN 50310 - estimated 2015-2016 - For those who specify telecom bonding & grounding

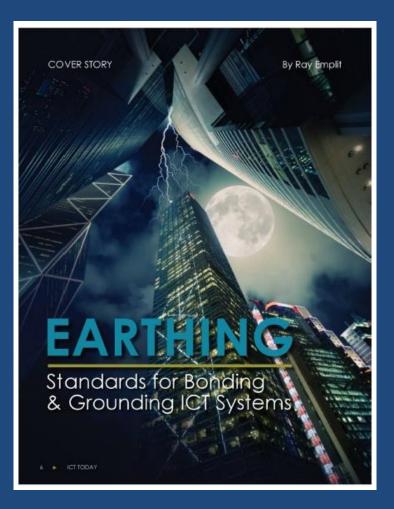
Noted standards activity - 3

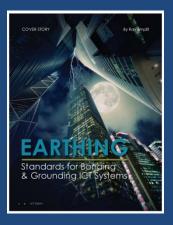
TIA – Published in 2013 & 2014

- ANSI/TIA-607-B-2 Structural Metal Addendum
 - Harmonizes with ISO/IEC 30129 Telecom Bonding standard in development
 - Permits the use of an electrically continuous building structural metal frame to be used in place of a dedicated telecommunications bonding backbone

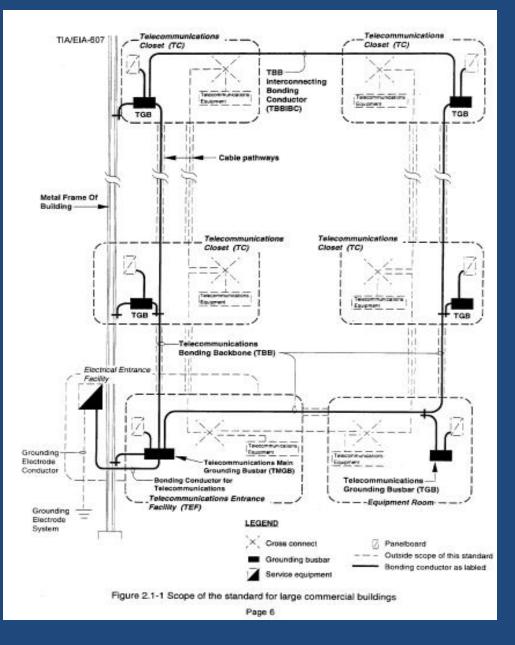


- For those who design or specify telecom bonding Bicsi


Noted standards activity - 4


TIA Standards in Development

- TIA-607-C bonding and grounding (earthing) update to TIA-607-B - harmonize with ISO/IEC 30129 where possible, integrate annexes on antenna grounding and building steel
- For those who specify telecom grounding & bonding
- Estimated 2015



BICSI's ICT Article on Standards for Bonding & Grounding ICT Systems (Nov/DEC 2014)

- Good summary article on evolution of TIA 607 into TIA 607-C
- Input of TIA 607-B materials into IEC 30129
- Harmonization of TIA 607-C with IEC 30129
- Separate file onscreen quick look

TIA 607 Diagram

03/24/15 - W Bush

ATIS PEG 2015 - Huntsville, AL

15

TIA 607-A Diagram

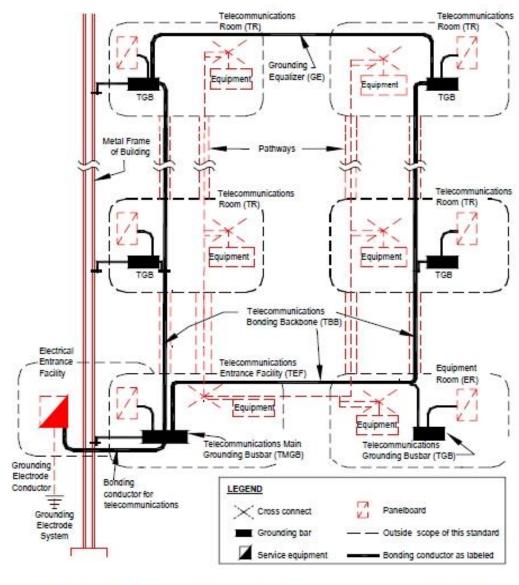
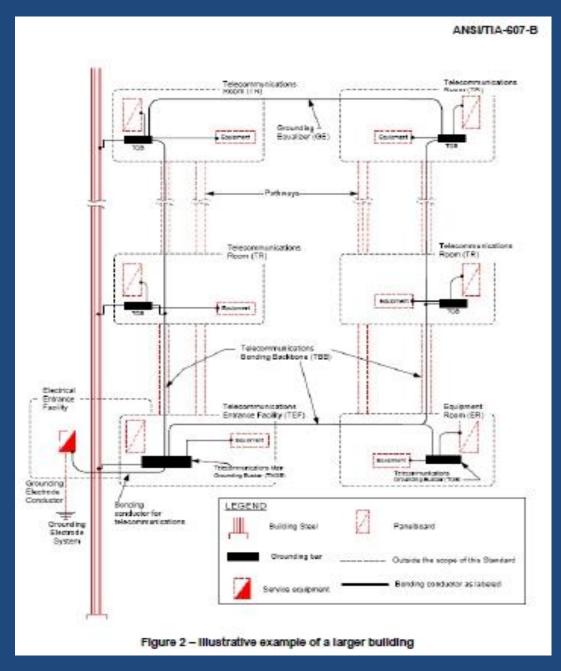



Figure 2.1-1 Scope of the standard for large commercial buildings

TIA 607-B Diagram

03/24/15 - W Bush

1 CONTENTS

2	1	Scope			
3	2	Nom	native ref	lerences	
4	3	Tem	ns, definit	tions and abbreviations	
5		3.1	Terms	and definitions	
6		3.2		lations	
7		3.3		ntions	
8	4	Conf			
9	5	Assessment of bonding networks			
10		5.1 Overview			
11		5.2 According to the impact of the telescommunications heading patients on the			
12		100000	Intercor	nnection of telecommunications equipment	13
13		5.3	Telecor	mmunication bonding networks	15
14		5.4	Telecor	mmunications bonding network performance	
15			5.4.1		
16			5.4.2		
17	6	Com	mon feat	ures	
18		6.1	Genera	1	
19		6.2		ive bonding networks	
20			621	Protective bonding network conductors (PNBCs)	
21			6.2.2	Main Earthing Terminal (MET)	
22		6.3		mmunications bonding networks	
23		0.0	6.3.1		
24			6.3.2	Telecommunications Entrance Facility (TEF)	
25		6.4		mmunications bonding network components.	
25			6.4.1	Telecommunications bonding network conductors	
27			6.4.2		
28		6.5		ts, frames and racks	
29		0.0	6.5.1	External connections to a bonding network.	
30			6.5.2		
31			6.5.3	· 사실 전 · 이상 김 · 이상 특징 · 사업 · 이상 · 이상 ·	
32		6.6	Rondin	a connections between telecommunications cabling infracts of se	
33		components.			
34			6.6.1	Bonding conductors for d.c. resistance control	
35			6.6.2	Bonding conductors for impedance control	
36		6.7	Docum	entation	
37	7	Dedi	cated tek	ecommunications bonding network	
38		71		al	
39		7.2	A 4 4 4 4 4 4 1 4	nents	
40		100	7.2.1	Primary bonding busbar (PBB)	
41			7.2.2	Secondary bonding busbar (SBB)	
42			7.2.3	Bonding conductors for d.c. resistance control	27
43			7.2.4	Bonding conductors for impedance control	
44		7.3		entation.	
45		1.0	7.3.1	Primary bonding busbar (PBB)	
45			7.3.2	Secondary bonding busbar (SBB)	
40			7.3.3	Telecommunications Bonding Conductor (TBC)	
47			7.3.4	Telecommunications Bonding Backbone (TBB)	
40			1.004	recommendation burning beautione (100)	

IEC 30129 draft - Scope

	30	129/W	D4 © ISC	D/IEC -3-	
49			7.3.5	Backbone Bonding Conductor (BBC)	30
50			7.3.6		
51			7.3.7		
52 53	8	Loca	i telecom orks	nmunications bonding networks in conjunction with protective bonding	
54		8.1		g for local distribution	
55			8.1.1		
56			8.1.2		
57		8.2	Teleco	mmunications bonding conductors	
58			8.2.1	Bonding conductors for d.c. resistance control	
59			8.2.2		
60		8.3	Bondin	g for areas of telecommunications equipment concentration	
61			8.3.1	Local mesh bonding networks	
62		8.4		of equipment concentration	
63 64	9	Loca	ommunic	munications bonding networks in conjunction with dedicated cations bonding networks	37
65		9.1	Bondin	g for areas of telecommunications equipment concentration	
66			9.1.1		
67			9.1.2	Recommendations	
68			9.1.3	Cabinets, frames and racks	
69		9.2	Teleco	mmunications bonding conductors	
70			9.2.1	Telecommunications equipment bonding conductor (TEBC)	37
71			9.2.2	Bonding conductor for connections to the supplementary bonding network	
72		9.3	Implem	nentation	
73	10	Mesi	h bonded	I networks	40
74		10.1	Genera	al	40
75		10.2	MESH	-8N	40
76			10.2.1	General	40
77			10.2.2	Implementation	
78			10.2.3	MESH-IBN	41
79			10.2.4	Supplementary bonding grid (SBG)	42
80			10.2.5	System Reference Potential Plane (SRPP)	43
81	Ал	nex A	Galvanic	corrosion	
82		A1	Genera	al	
83		A.2	Require	ements	
84	An	nex B	Bonding	conductor cross-sectional area	46
85	BID	llogra	phy		47
86 87	Lis	t of fl	guree		
88	Fig	ure 1	- Schem	atic relationship between ISO/IEC 30129 and other relevant standards	
89 90	Fig	ure 2- nding i	Schema network t	atic of telecommunications equipment distribution and telecommunications erminology	13
91				Ity of cabling media to bonding network performance	
92				e of three methods of equipment and rack bonding	
93				e of a bond connection from a cabinet to the cabinet door	
94				ie of bonding straps	
95				ive example of a large building	
96	-			ive example of a smaller building	
30	rig	uie o	- musu a0	we example of a smaller pulliding	

IEC 30129 draft - Scope

IEC 30129 draft - Scope

	-4- 3012	8/WD4 © ISO/IEC
97	Figure 9 - Schematic of PBB	
98	Figure 10 - Schematic of SBB	
99	Figure 11 - Star protective bonding and supplementary telecommunications bonding	
100	Figure 12 - Example of high common impedance and large loop	
101	Figure 13 - Example of low common Impedance and small loop	
102	Figure 14 - Ring protective bonding and supplementary telecommunications bonding	
103	Figure 15 – Mesh-BN example	
104	Figure 16 – Local mesh bonding network	
105	Figure 17 - Example TEBC to rack bonding conductor connection	
106	Figure 18 – Example of a TEBC routed on cable tray	
107	Figure 19 - A MESH-BN with equipment cabinets, frames, racks and CBN bonded to	gether 40
108	Figure 20 - A MESH-IBN having a single point of connection	
109	Figure 21 – Example of access floor	
110	Figure 22 - Example of Installation details for an under floor transient suppression pla	ate
111		
112	List of tables	
113	Table 1 – Telecommunications bonding network requirements	
114	Table 2- d.c resistance requirements for protective bonding networks	
115	Table 3- Impedance/frequencies requirements for protective bonding networks	
116	Table 4- d.c resistance requirements for telecommunications bonding networks	
117	Table 5- Impedance/frequencies requirements for telecommunications bonding netwo	ofks 17
118	Table 6 – TBB conductor sizing	
119		
120	Table B.1 - Bonding conductor equivalents	
121		

IEC 30129 draft - Scope

1 Scope

This International Standard specifies requirements and recommendations for the design and installation of connections (bonds) between various electrically conductive elements in buildings and other structures in which information technology (IT) and, more generally, telecommunications equipment is intended to be installed in order to

- a) minimise the risk to that equipment and interconnecting cabling from electrical hazards,
- b) provide the telecommunications installation with
 - a reliable signal reference,
 - improved immunity from electromagnetic interference.

The requirements of this International Standard are applicable when telecommunications cabling installations are planned for new constructions and during the refurbishment of buildings.

The requirements of this International Standard are applicable to the types of buildings and structures addressed by ISO/IEC 14763-2 (e.g. residential, office, industrial premises and data centres) but information given in this International Standard may be of assistance for other types of buildings and structures.

30129/WD4 © ISO/IEC

- 13 -

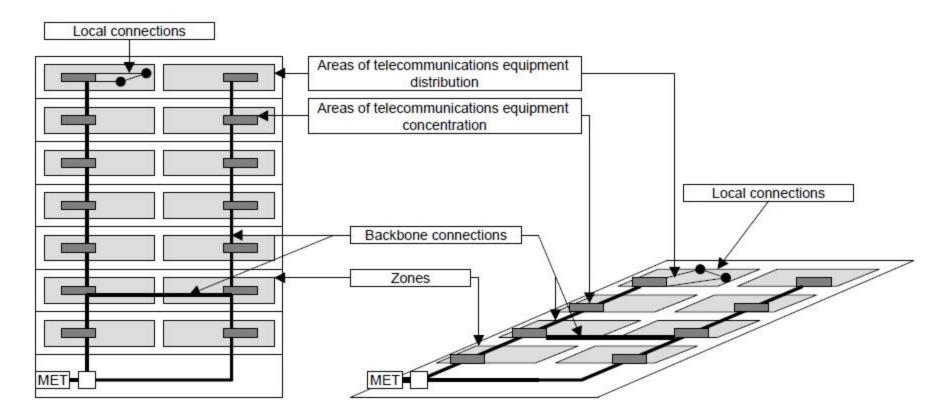


Figure 2 - Schematic of telecommunications equipment distribution and telecommunications bonding network terminology

IEC 30129 draft – Table 1

Table 1 - Telecommunications bonding network requirements

Editors note: the current content of this table are only intended to highlight the general mechanism for referencing the requirement of later chapters

			nission channel length limits)
Media		Between any zones	Within a zone
Asymmetric cabling	Using protective bonding network	d.c resistance and impedance control requirements of clause 8	d.c resistance and impedance control requirements of clause 8
	Using dedicated telecommunications bonding network	d.c resistance and impedance control of clause 7	d.c resistance and impedance control of clause 9
Symmetric cabling	Using protective bonding network	d.c resistance control requirements of clause 8	d.c resistance control requirements of clause 8
(unbalanced applications)	Using dedicated telecommunications bonding network	d.c resistance control of clause 7	d.c resistance control of clause 9
Symmetric cabling	Using protective bonding network	d.c resistance control requirements of clause 8	d.c resistance control requirements of clause 8
(screened)	Using dedicated telecommunications bonding network	d.c resistance control of clause 7	d.c resistance control of clause 9
Symmetric cabling	Using protective bonding network	d.c resistance control requirements of clause 8	d.c resistance control requirements of clause 8
(unscreened)	Using dedicated telecommunications bonding network	d.c resistance control of clause 7	d.c resistance control of clause 9
Optical fibre		No requirements	No requirements

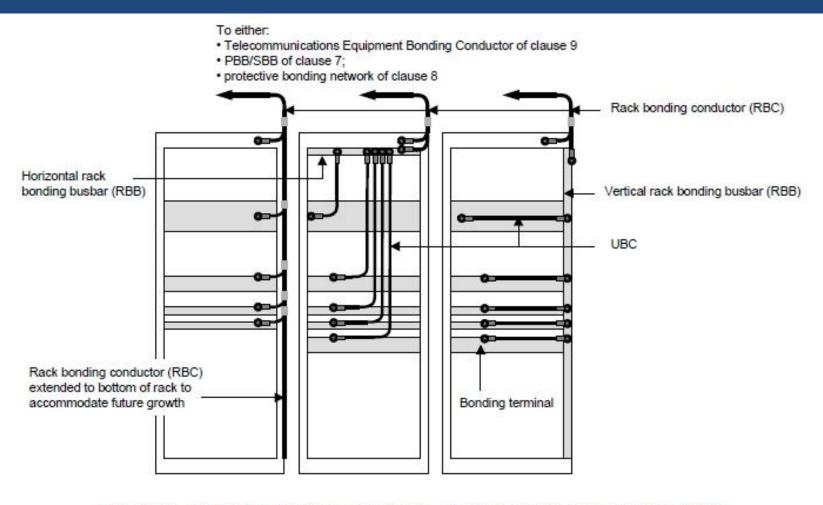
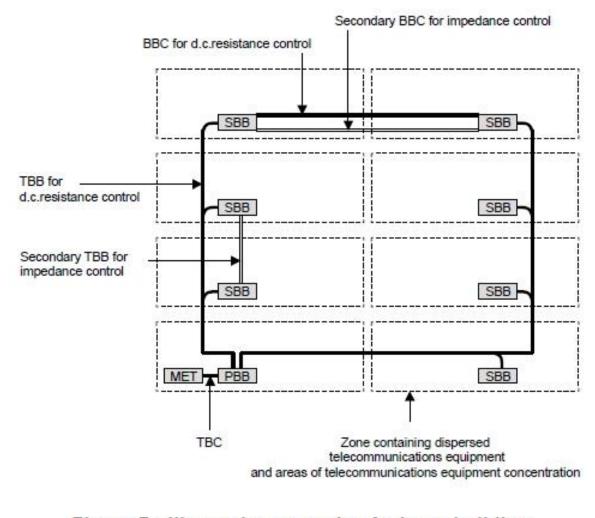
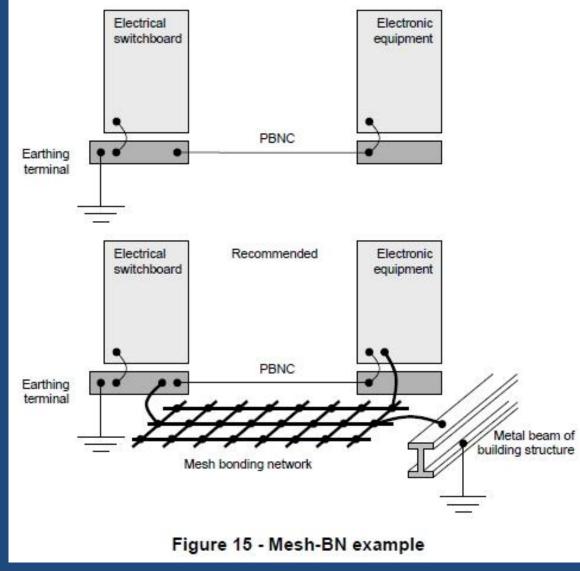
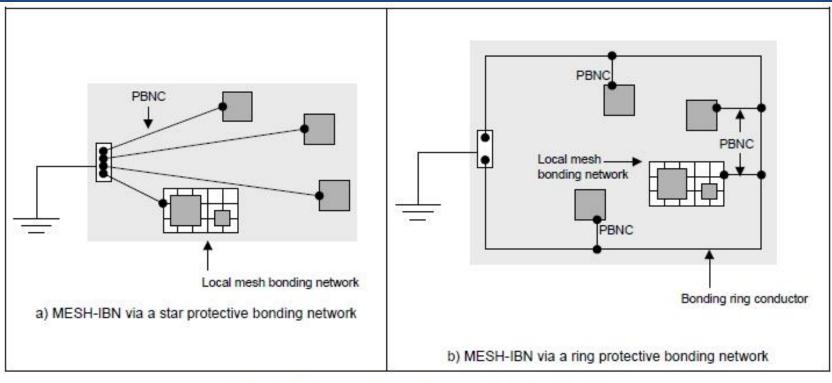


Figure 4 - Example of three methods of equipment and rack bonding

ATIS PEG 2015 - Huntsville, AL




Figure 7 - Illustrative example of a large building


03/24/15 - W Bush

To provide optimum d.c. resistance control the TBB should be constructed from conductors in accordance with Table 6.

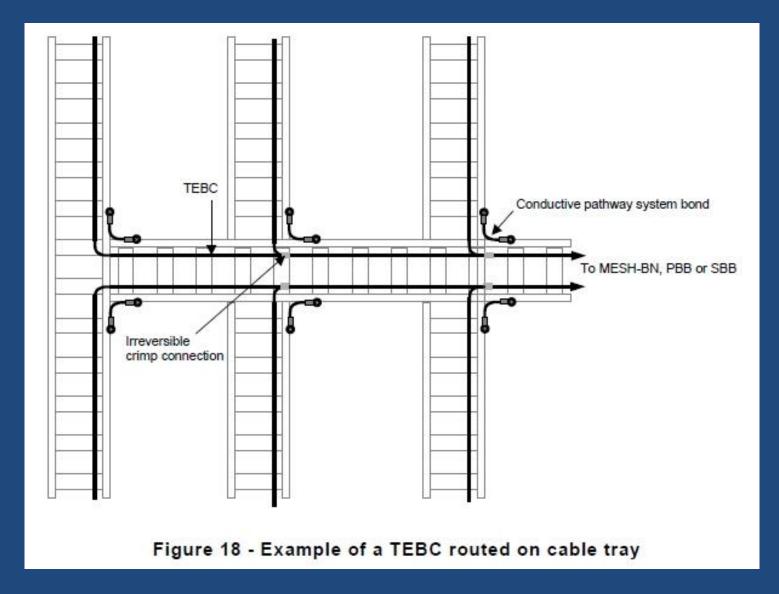

Maximum PBB- SBB length 1 (m) $l \le 4$ $l \le 4$ $4 < l \le 6$ $6 < l \le 8$ $8 < l \le 10$ $10 < l \le 13$ $13 < l \le 16$ $16 < l \le 20$ $20 < l \le 26$ $26 < l \le 32$ $32 < l \le 38$ $38 < l \le 46$ $46 < l \le 53$ $53 < l \le 76$ $76 < l \le 91$	Conductor cross-sectional area (mm ² , min)	
<i>l</i> ≤ 4	13	
$4 < l \le 6$	21	
6 < <i>l</i> ≤ 8	26	
8 < <i>l</i> ≤ 10	33	
10 < <i>l</i> ≤ 13	42	
13 < <i>l</i> ≤ 16	53	
16 < <i>l</i> ≤ 20	67	
20 < <i>l</i> ≤ 26	84	
$26 < l \leq 32$	107	
32 < <i>l</i> ≤ 38	125	
38 < <i>l</i> ≤ 46	150	
46 < <i>l</i> ≤ 53	175	
53 < <i>l</i> ≤ 76	250	
76 < <i>l</i> ≤ 91	300	
shown above, the sectional area sha	excess of those conductor cross- all be calculated as per metre	

Table 6 - TBB conductor sizing

Figure 16 - Local mesh bonding network

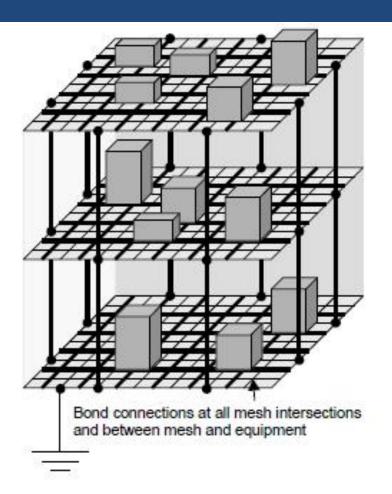
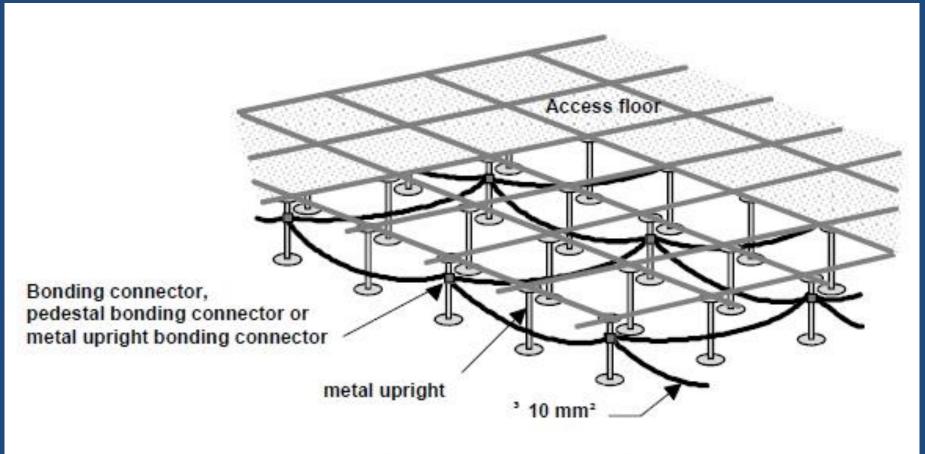
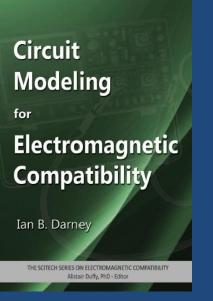



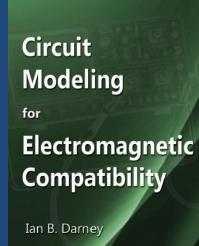
Figure 19 - A MESH-BN with equipment cabinets, frames, racks and CBN bonded together


Figure 21 - Example of access floor

Recognized Problems

- Lingering myths of grounding & bonding
- WGs driven by marketing interests
- Migration of trade std to Int'l std status
- Commercial building is baseline layout

Lingering myths of grounding & bonding


- AC power faults require TBB to be "engineered" as an ac equip grd conductor
 Also, TBB sized at 2 kcmil/ft (GTE Labs artifact)
- ITE requires increasingly stringent grounding — Bigger and/or more wires; "bonding grids"
- Grounding/bonding cures all ITE "ghost" operational problems

Grounding & Bonding Industry Recognized as Misleading

1.7 Practical design techniques

Since the concepts of the 'equipotential ground', the 'single-point reference', and the advice to 'avoid earth loops' have acquired universal acceptance as critically important guidelines, the first three sections of Chapter 8 are devoted to an explanation as to why they are so misleading. The remaining sections identify many of the techniques employed by generations of designers to improve circuit immunity and reduce the level of unwanted emissions.

Grounding & Bonding Industry Recognized as Misleading

8.1 Grounding

THE SCITECH SERIES ON ELECTROMAGNETIC COMPATIBILITY Alistair Duffy, PhD - Editor

Reliance on the use of the conducting structure as the universal return path for all signals and all supplies is probably the most prevalent cause of EMC problems. This could be due to the widespread belief in the existence of the equipotential ground plane. There is no such thing.

Ground planes are an extremely useful design feature of printed circuit boards and integrated circuits. But this does not mean that they are equipotential surfaces. Nor does it mean that a conductor designated as 'ground' or 'earth' is automatically a zero voltage reference point for all signals in the system.