



# TRANSIENT SURGE FILTERING

## USE OF LOW PASS FILTERING IN SURGE PROTECTION





## AGENDA

- Classification of Impulses & Surges
- Traditional MOV/Crowbar Protection vs. Filtering
- Concepts Behind Surge Filtering
- Summary





# **Classifications of Surge Impulses**

- Waveshape
  - $t_{front}, t_{tail}$
- Magnitude

$$-i_{pk}$$

Charge
*Q*

$$|^{2}t$$
  
-  $kJ/\Omega$ 







## Classification of Surge Impulses (cont.)

- Frequency
  - Harmonics

- $\hat{f}(\xi) = \delta(0) + \delta(10E3) + \delta(20E3) + ... + \delta(100E3)$
- Sum of Dirac delta functions
- Bandwidth
- Magnitude



All transients are signals and can be analyzed by the Fourier Transform





# **Traditional Surge Protection Design**

• Metal Oxide Varistors (voltage limiting devices)



Voltage limiting and switching are the main components for protection





# **Traditional Surge Protection Design**

- Cascading protection
  - SPDs at the service entrance are higher rated (higher let-through)
  - SPDs at the sub-panels are lower rated (lower let-through)



Cascading protection limits the voltage from transients in stages





# **Cascading Stage Limiting**



Each stage diverts more energy and keeps the end voltage low





## **Different Voltages on Parallel Lines**



Voltages in parallel are the same, additional voltage drop exists





## Voltage Must be Dropped Across the Wiring



Wiring impedance can be used to isolate staged protection





# Voltage Drop Across Wiring

- Theoretically: 4mm<sup>2</sup> (12AWG) wire is  $\approx \frac{4m\Omega}{m}$  and  $\frac{1\mu H}{m}$
- $V = i \cdot R + L \frac{di}{dt}$   $K^{1}$   $M^{1}$   $M^{2}$   $K^{1}$   $M^{2}$   $K^{1}$   $M^{2}$   $K^{1}$   $M^{2}$   $K^{1}$   $M^{2}$   $K^{1}$   $K^$
- Gets lower with larger wire

|    |    | 6 AWG    |          | 4 AWG    |          | 2 AWG    |          |
|----|----|----------|----------|----------|----------|----------|----------|
|    |    | ( V/ft ) | ( V/cm ) | ( V/ft ) | ( V/cm ) | ( V/ft ) | ( V/cm ) |
| 3  | kΑ | 152.40   | 5.00     | 94.45    | 3.10     | 83.61    | 2.74     |
| 10 | kΑ | 441.16   | 14.47    | 385.00   | 12.63    | 340.65   | 11.18    |
| 40 | kΑ | ?        | ?        | 1579.35  | 51.82    | 1254.19  | 41.15    |

#### Wiring might be sufficient to mitigate this problem





## When Wiring is Short with Minimum Losses (1/2)

Smaller SPD clamps first

Since the lower rated MOVs are more sensitive they will begin clamping the voltage first

Larger SPD only when threshold is exceeded

The larger SPD will only turn on if the smaller SPDs clamping voltage goes above the turn-on voltage of the larger SPD





Current initially goes through the smaller SPD until larger turns on





### When Wiring is Short with Minimum Losses (2/2)



The lower rated device absorbs most of the impulse





## What is a Low Pass Filter?

Low-Pass Filter

• Lower frequencies Pass while higher frequencies are attenuated



Low Frequency Signals Pass!





## Low Pass Filters

Low frequency signals experience no attenuation • Corner Frequency Gain = 20 log  $\frac{Vout}{Vin}$ fc High frequency signals experience Stop Band Pass Band ٠ 0dB large amounts of attenuation -3dB (45°) -3dB Frequency Slope = Response -20dB/Decade Output I R Bandwidth  $V_{in}$  $V_{c}$ *f*c (LP) Frequency (Hz) Phase (Logarithmic Scale) 00  $H(s) = \frac{1}{1 + RCs}$ -45° Phase Shift Where s =  $j\omega$ -90° Frequency (Hz)





### Characterizing a Filter

- At higher frequencies, Vout is multiplied by something smaller than "1".
- 3 dB Point "cutoff frequency" this is the frequency where the filter cuts off of the output power (half-power point)
- 100 kHz Gain a benchmark frequency used to compare filtering at a high frequency



#### **Higher Frequencies are attenuated!**



# 100kHz Benchmark



- = 20 \* Log(0.0086/15.8)
- = 20 \* Log(0.0005)
- = -65.28 dB





- Filter input = 15.8Vpp
- Filter output = 8.6mVpp



Industry rule of thumb is for -45db at 100kHz





10<sup>5</sup>

### **RC** Filter







### LC Filter









### Comparing: RC vs LC







### **Combining these Functions**



#### Low-Pass between LINE and NEUTRAL

#### Traditional Surge Protective Device (MOV, GDT...)





### **Combining these Functions**

- Clamps transient voltage
- Slows the rate of voltage rise
- Attenuates small signal RFI/EMI noise problems



Surge Filter reduces let-through voltage!





### Value Choices for inductor & capacitor Filter – Negligible improvement but badly ringing

- 3kA 8/20us
- Green SPD output
  - 378Vpk
- Purple filter output
  - 620Vpk





- No improvement over MOV only
- Harmful ringing of the LC filter actual makes the results worse

#### Filter ringing worsens results!





### Value Choices for inductor & capacitor

Filter – Bad

- 3kA 8/20us
- Green SPD output
  - 370Vpk
- Purple filter output
  - 542Vpk



- Filter starts to improve the dV/dt
- The output voltage is still climbing even after MOV voltage has dropped.
- Once the inductor current reaches zero the output voltage peaks

#### **Voltage continues to rise after MOV drops**



## Value Choices for inductor & capacitor

Filter – Good not Great

Protection Engineers Group

- 3kA 8/20us
- Green SPD output
  - 378Vpk
- Purple filter output
  - 358Vpk



- Filter starts to improve the dV/dt
- The output voltage is still climbing even after MOV voltage has dropped.
- Once the inductor current reaches zero the output voltage peaks

#### What is the point?





## Value Choices for inductor & capacitor

#### Filter – Great Filter

- 3kA 8/20µs
- Green SPD output
  - 382Vpk
- Purple filter output
  - 166Vpk





- Filter significantly reduced the dV/dt
- Filter output is less than the MOV alone

#### Filter reduces the output!





# Cascading Stage Testing w/ TSF







## Cascading Stage Testing w/ TSF







# Cascading Stage Testing w/ TSF



Each stage diverts more energy and keeps the end voltage low





#### Many industries demand high performance protection

- •Process Control
- •SCADA and Telemetry
- •Panel Shops / Sl's
- •OEMs
- •Automotive
- •Petrochem
- •Telecom Power
- •Lighting Control
- •Water & Wastewater Treatment
- •Medical Equipment
- •Semiconductor Equipment







#### Many Applications...





### Application: BTS Sites

#### Mobile Telecom Enclosure

- Standalone type BTS sites
- No shelters trending upward
  - Small IP66 enclosure where they can fit all electrical switchgear equipment.



**Example Application: Telecom BTS Sites** 





#### Application: Communication System at a LNG Extraction Facility

Telecommunications cabinets (Fiber nodes, telephones, CCTV)



Surge Filter (240VAC - 6A)





#### **Example Application: Resource Extraction Telecom Cabinets**





### **Application: Public Transit Pass**

#### Fast Pass Reader for railway / subway stations



Fast Pass Reader



Surge Filter (120VAC - 20A)

#### **Example Application: Railway Pass Readers**





## **Application: SCADA**

#### Remote Terminal Unit (RTU) used to take sections of the grid offline



**Example Application: RTU** 





# Application: Lighting Control

#### **Lighting Control Panel**



**Example Application: Control Panel** 





## Technology is not limited to small current levels







### What is a Surge Filter?

**Relevant Standards for Surge Filters** 

- UL 1449 4<sup>th</sup> Edition Standard for Surge Protective Devices
- UL 1283 Standard for Electromagnetic Interference Filters
- IEC 61643-11 Standard for Low-voltage Surge Protective Devices



#### **RELEVANT STANDARDS!**





## **QUESTIONS?**

GREG.MARTINJAK@PENTAIR.COM

CHRISTIAN.BARCEY@PENTAIR.COM