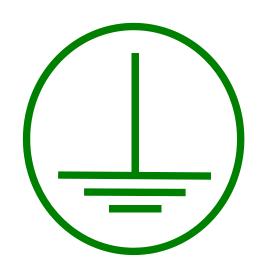


Requirements for Earthing Enhancement Compounds

Presenter: Rohit Narayan Author: Dale Boling, PE

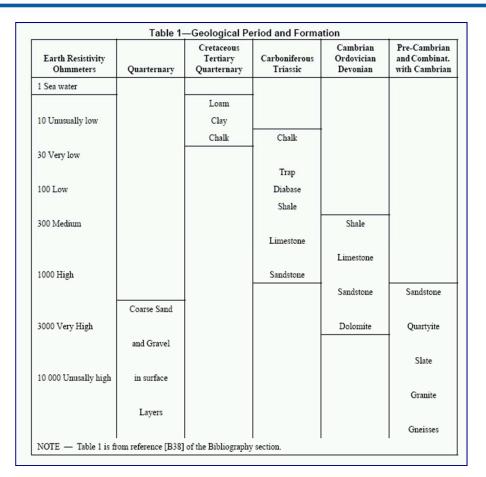
March 25, 2014

Agenda


- Introduction
- Grounding and Ground Electrode Resistance
- Earthing Enhancement Compounds
- International Electrotechnical Commission (IEC)
- IEC 62561-7 Requirements for Earthing Enhancing Compounds
- Leaching Tests
- Sulfur Tests
- Determination of Resistivity
- Corrosion Tests Linear Polarization Resistance (LPR)
- Marking and Indications
- Structure and Content of Test Report

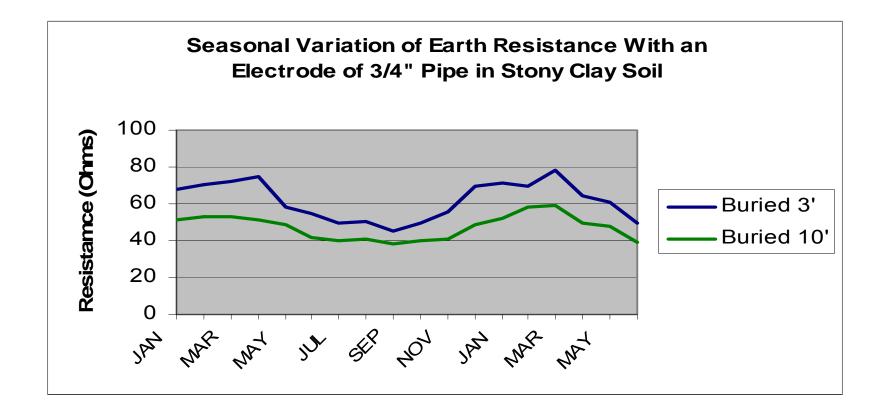
Why Ground?

- Personnel Safety
 - Reduce Potential Differences Between Non-current Carrying Parts (Enclosures) and Between Non-current Carrying Parts and Earth
- Equipment Protection
 - Operate Overcurrent Device During a Ground Fault
 - Equalize Voltage Potentials
 - Overvoltage Control
- Lightning Dissipation
- ESD (Electrostatic Discharge)
- Noise Control (Computer Grounding)



- Equipment Damage
- Downtime and Loss of Operations
- Loss of Service
- Public Dissatisfaction About Reliability
- Human Safety

ERICO


Description	Average Resistivity (ohm- meters)	
Well-graded gravel, gravel-sand mixtures, little or no fines	600 to 1,000	
Poorly-graded gravel, gravel-sand mixtures, little or no fines	1,000 to 2,500	
Clayey gravel, poorly graded gravel, sand-clay mixtures	200 to 400	
Silty sands, poorly graded sand-silt mixtures	100 to 500	
Clayey sands, poorly graded sand-clay mixtures	50 to 200	
Silty or clayey fine sands with slight placticity	30 to 80	
Fine sandy or silty soils, elastic silts	80 to 300	
Gravelly clays, sandy clays, silty clays, lean clays	25 to 60	
Inorganic clays of high plasticity	10 to 55	
Sea water	1	

Resistivities of Different Soil Types

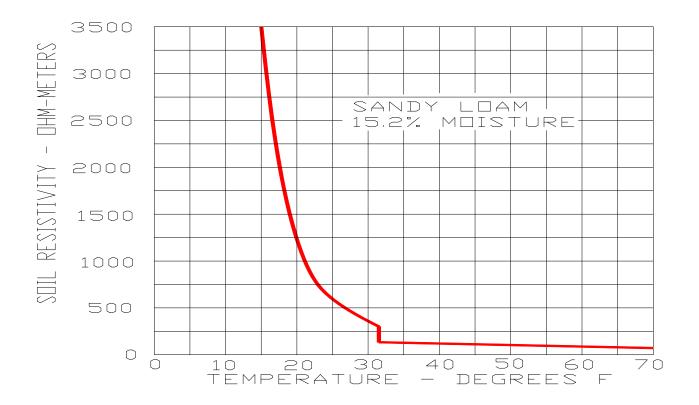
ERICO

Soil Types and Resistivity - Geological Period and Formation (IEEE Std 81)

Resistance Variation With Seasons

Moisture content % by	Resistivity, Ohm-cm	
weight	Top soil	Sandy loam
0	1,000 x 10 ⁶	1,000 x 10 ⁶
2.5	250,000	150,000
5	165,000	43,000
10	53,000	18,500
15	19,000	10,500
20	12,000	6,300
30	6,400	4,200

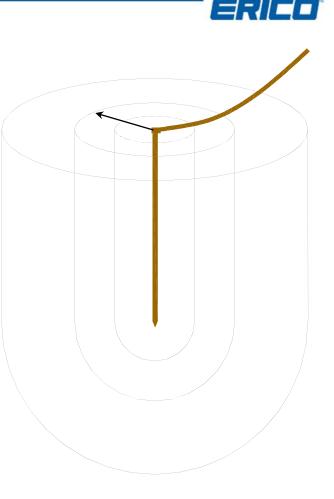
Effect of Moisture on Earth Resistivity


Effect of Moisture

Temperature		Resistivity, ohm-cm
°C	°F	Resistivity, onni-chi
20	68	7,200
10	50	9,900
0	32 (water)	13,800
0	32 (ice)	30,000
-5	23	79,000
-15	14	330,000
*For sandy loam, 15% moisture		

Effect Of Temperature On Earth Resistivity

A Seasonal Change From 20° C to -5° C Will Decrease Soil Resistivity by a Factor of 10

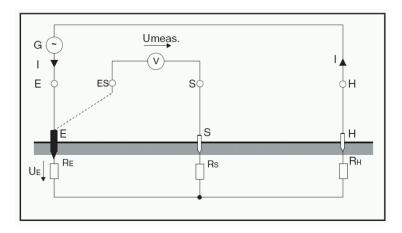


ERICO

Effect of Temperature

Ground Electrode Resistance

- Resistance Between Round Electrode System and Remote Earth
- Comprised of:
 - Resistance of Electrode
 - Contact Resistance Between the Electrode and Soil
 - Resistance of Soil, from the Electrode Surface Outward
 - Flow of current outward from the electrode to infinite earth



Ground Electrode Resistance

 Measurement of Ground Electrode Resistance

3-Point Fall-of-Potential Method

Ground Electrode Resistance

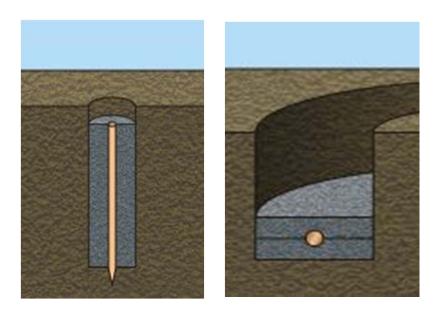
- Requirements
 - NEC and NESC25 ohms
 - Military Standards10 ohms
 - Telecom Industry5 ohms

ERICO

- What Affects the Grounding Resistance?
 - Diameter of the Ground Electrode
 - Length / Depth of the Ground Electrode
 - Number of Ground Electrodes
 - Grounding System Design

ERICO

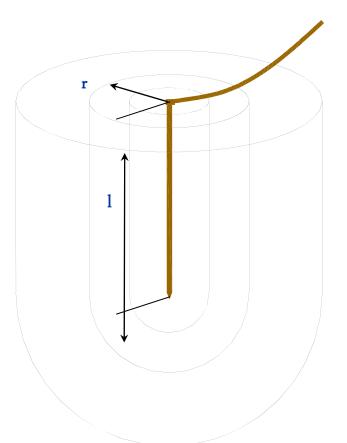
Rod Diameter Has Minor Effect on Resistance


Resistance vs. Rod Depth Resistance (ohms) 1/2" Rod (ohms) 1" Rod (ohms) 90 95 100 20 S Rod Depth (ft)

Doubling Rod Depth Reduces Resistance 40% In Uniform Soil

- Ground Enhancement Methods
 - Chemicals (Salts) and Chemical Ground Rods
 - May Need to Be Periodically Recharged
 - May Have Environmental Concerns Depending on Materials
 - Bentonite
 - Primarily Comprised of the Mineral Montmorillionite
 - Requires Moisture to Maintain Low Resistance

Available in Several
 Forms Including
 Powders, Granules,
 Pellets, Gels and
 Cementitious Mixtures



Ground Rod and Conductor with Earthing (Ground) Enhancement Material

- Copper Sulfate / Copper-based
 Solutions (Gels)
 - Chemical Treatment
 - Electrolytic or Ionic Conduction
- Carbon Based Materials
- Cementitious Materials
 - Permanent
 - Does Not Leach or Wash Away
 - Shown to be Effective in Long Term Independent Studies (NEGRP)

Ground Enhancement Material

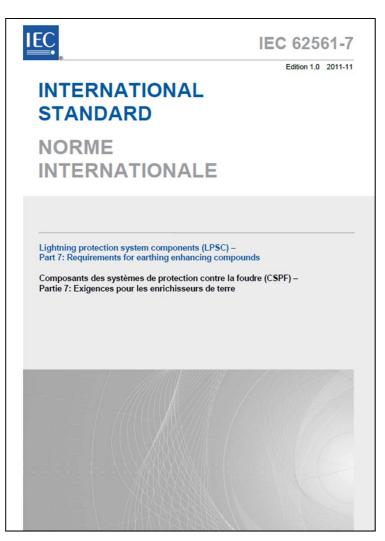
Radius (^r) in Meters	Percent of Resistance
0.03	25%
0.06	38%
0.09	46%
0.15	52%
0.3	68%
1.5	86%
3	94%

ERICO

Resistance Around Rod

International Electrotechnical Commission

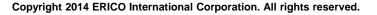
- Established in 1906
- Non-profit, Non-Governmental
- Headquartered in Geneva, Switzerland
- Part of World Standards Corporation
- 6,178 Published Standards



Standards Development

IEC 62561-7

- Lightning Protection System Components (LPSC), Part 7: Requirements for Earthing Enhancing Compounds
- Published November, 2011
 - Leaching
 - Sulfur
 - Resistivity
 - Corrosion
 - Marking / Indications
 - Test Report



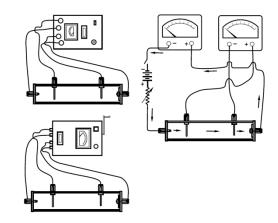
ERICA

IEC 62561-7 Leaching Tests

- Earth Enhancement Materials must be Chemically and Physically Stable
 - EN 12457-2
 - "Characterization of Waste -Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2"
 - EN 12506
 - "Characterization of Waste -Analysis of Eluates -Determination of pH, As, Ba, Cd, Cl-, Co, Cr, Cr VI, Cu, Mo, Ni, NO2-, Pb, total S, SO₄²⁻, V and Zn".

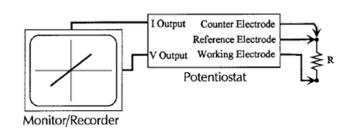
NORME EUROPÉENNE	EN 12457-2		
EUROPÄISCHE NORM	September 2002		
ICS 13.030.10; 13.030.20			
Englist	h version		
Characterization of waste - L leaching of granular waste mat stage batch test at a liquid to s with particle size below 4 mm	terials and sludges - Par solid ratio of 10 l/kg for n	rt 2: One naterials	
Caractérication des déchets - Lukvation - Escal de conformé pour la lixikation des déchets fragmentés et des boses - Parte 2: Escal en blochet europa evise un apport liquide-solote de 10 ling et une granularité référeure à 4mm (sans ou avec réduction de la granularité)	Charakterislerung von / Obereinstimmungsuntersuch Körnigen Aställen und Schü Schützerfahren mit /Feststöffverhältnis von 10 i Körngrößer Körngrößer	nung für die Auslaugung von ämmen - Teil 2: Einstufiges t einem Flüssigkeits- l/kg für Materialien mit einer mm (ohne oder mit	
This European Standard was approved by CEN on 17 August 2002.			
CEN members are bound to comply with the CEN/CENELEC Interna Standard the status of a national standard without any alteration. Up- standards may be obtained on application to the Management Centre	 to-date lists and bibliographical reference 	ns for giving this European as concerning such national	
This European Standard exists in three official versions (English, Fre under the responsibility of a CEN member into its own language and versions.	noth, German). A version in any other land notified to the Management Centre has th	guage made by translation he same status as the official	
CEN members are the national standards bodies of Austria, Beigum Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Por	n, Czech Republic, Denmark, Finland, Fra fugal, Spain, Sweden, Switzerland and U	nce, Germany, Greece, nited Kingdom.	
COMITÉ EUROPÉEN EUROPÀISCHES KOM	F FOR STANDARDIZATION DE NORMALISATION dITER FOR NORMUNO Stassert 32 B-1050 Brunsels	Characterizat waste — Analy eluates — Determination As, Ba, Cd, CT, Cr VI, Cu, Mo, Pb, total S, So and Zn	ion of vsis of n of pH, , Co, Cr, Ni, No ₂ ,
COMITÉ EUROPÉEN EUROPÄISCHES KOM	DE NORMALISATION MITEE FÜR NORMUNG	Characterizat waste — Analy eluates — Determination As, Ba, Cd, CT, Cr VI, Cu, Mo, Pb, total S, So	ion of vais of n of pH, , Co, Cr, Ni, No ₂ , ² , V
COMITÉ EUROPÉEN EUROPÄISCHES KOM	DE NORMALISATION MITEE FÜR NORMUNG	Characterizat waste — Analy eluates — Determination As, Ba, Cd, CT Cr VI, Cu, Mo, Pb, total S, So and Zn	ion of ysis of n of pH, , Co, Cr, Ni, No ₂ , ² , V

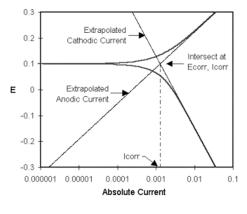
IEC 62561-7 Sulfur Tests


- Sulfur Content
- Petroleum Coke often Used
- Corrosive to Ground
 Electrodes
- ISO 14869-1
 - "Soil quality Dissolution for the Determination of Total Element Content -- Part 1: Dissolution with Hydrofluoric and Perchloric Acids"

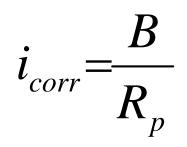
IEC 62561-7 Resistivity

- No Requirement for Minimum Resistivity
- Must be Marked on Packaging
 - Product Data Sheets
 - Catalog
 - Instruction Sheets
- Tested in Accordance to
 ASTM G-57
 - "Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method".


Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method ¹	
This standard is issued under the fixed designation (J 53, the number adoption on, in the case of revision, the poor of last revision. A num epsilon (a) indicates an adiatrial change since the last revision or	immaliately following the designation infinites the yoar of original ser in parentheses indicates the year of last reapproval. A superscript supproval.
 Lenger 11 This is an starbulk ensure the supplement and proceedings to hard the supplement of the same base is the cleanith of hard the supplement of the same base is the hard the supplementation of the supplementation hard the supplementation of the supplementation of the hard the supplementation of the supplementation of the supplementation of the hard the supplementation of the supplementation of the supplementation of the supplementation of the hard the supplementation of the supplementation of	and a forward the theory of the straight of t
sion of the electrical character of wills (and watery) since it is expressed in which numbers. 3.12 Benistivity measurements indicate the relative ability of a modium to carry destrical currents. When a metallitie the modium is carry curved will influence the magnitude of galaxies curvers and cathodic protection currents. The degree of electrode polarization will also affect the size of such currents.	electrodes, the ratio investment $p_{\rm electrode}$ is a spacing for the second spacing for the space ${\rm R}$ and ${\rm R}$ = inserved space, fill ${\rm R}$ and ${\rm R}$ = inserved space ${\rm R}$, and ${\rm R}$ = or substance is a space ${\rm R}$.
3. Summary of Test Method 13: The Watter Generative method requires that four meal detention is placed with equal separation in a straight line in the surface of the solit as depth one exceeding 5.5 we transmission shares be selected with combinations of the surface approximation shares be selected with combinations of the surface of the strain strain strain strain strain strain strain ¹ The set mained is under the justicity of Mathematica 700, both Comman is back.	$\label{eq:rescaled} \begin{array}{l} \mu_{i}\Omega on=\pi\delta B\left(1-\frac{\delta}{\delta+\tau_{i}}\right) \\ \text{where:} \\ \delta=\ contract electrode spacing, cm, \\ \sigma=\ inner decorrelation (arrow of the state), cm, and \\ \sigma=\ inner decorrelation (arrow of the state), cm, and \\ \Delta A for wall contracted in a soft back similar to the one show in Fig. 1, the resistivity, \mu_{i} is: \mu_{i}\Omega cm=\pi a_{i} a_{i}$


- Linear Polarization
 Resistance Method
- ASTM G59-97
 - "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements"
- ASTM G102-89
 - "Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements"

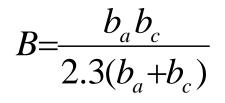
- Polarization Resistance
 - Related to the Rate of General Corrosion for Metals at or Near their Corrosion Potential
 - Potentiostat Measures
 Current as a Function of
 Voltage
 - Results in Polarization
 Curve



Potentiostat

Polarization Curve

 Polarization Resistance is Related to the Corrosion Current (Anodic or Cathodic) by the Stern-Geary Coefficient B


B = Proportionality Constant (mV) R_p = Linear Polarization Resistance (ς .m²) i_{corr} = Corrosion Current (μ A/cm2)

- Stern-Geary Coefficient *B*
 - Determined
 Empirically by Weight
 Loss Experiments

or

Calculated from
 Slopes of Anodic and
 Cathodic Tafel
 Curves

B = Stern-Geary Coefficient (mV) $b_a = \text{Slope of Anodic Curve}$ $b_c = \text{Slope of Cathodic Curve}$

$$1 \mu$$
A/cm2 = 11.6 μ m/yr for Copper

$$1 \mu A/cm^2 = 15.0 \mu m/yr$$
 for zinc

$$\frac{mA}{cm^2} = 3.28 \frac{M}{nd}$$

ERICA

M = atomic mass*n* = number of electronsfreed by corrosion reaction*d* = density

CopperZincCorrosion Rate CCorrosion Rate C μ m/yr μ m/yr $C = \frac{11.6B}{10R_p}$ $C = \frac{15.0B}{10R_p}$

IEC 62561-7 Stern-Geary Constants

- Copper
 - Non-Aggressive Environments
 B = 25 mV
 - Aggressive Environments
 B = 50 mV
- Zinc
 - Non-Aggressive Environments
 B = 20 mV
 - Aggressive Environments
 B = 50 mV

ERICO

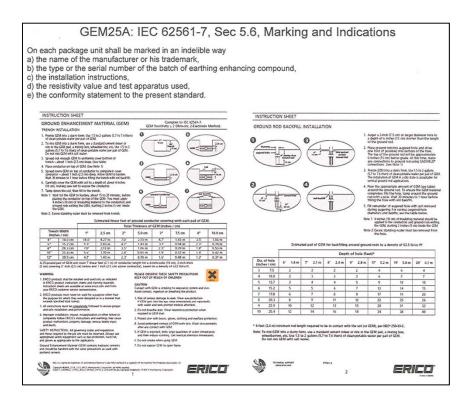
Calculation of Polarization Resistance

- Copper
 - 10 mils (254 μ m) Copper
 - Lifetime = 35 years
 - Corrosion Rate for Copperbonded Ground Rods Must be Less than 7.3 µm/yr
 - Polarization Resistance
 - 4 Ω·m2 for Non-aggressive Environments
 - 8 Ω·m2 for Aggressive Environments

11.6*B* $\frac{10R_p}{10R_p}$

Copper

Calculation of Polarization Resistance


- Zinc
 - 3.9 mils (99 $\mu m)$ of Zinc
 - Lifetime = 10 years
 - Corrosion Rate Must not Exceed 9.9 µm/yr
 - Polarization Resistance Greater Than
 - 3 Ω·m2 for Non-aggressive Environments
 - 7.6 Ω·m2 for Aggressive Environments

15.0*B* $10R_n$

Zinc

IEC 62561-7 Marking and Indications

- The Following Must be Included:
 - Manufacturer's name, trademark or identifying symbol
 - Serial or Lot number
 - Must Include
 Installation Instructions
 - Resistivity and Test Apparatus Used
 - Conformity statement to IEC 62561-7

IEC 62561-7 Structure of Test Report

- Report identification
- Specimen description
- Description of Test Procedure, Testing Equipment, and Measuring Instruments
- Results, Parameters, Passing Criteria
- Pass/Fail Statement

Declaration of Conformity	
Supplier:	ERICO International Corporation 34000 Solon Road Solon, CH 44139 USA
Product Part Numbers:	GEM25A - 25-lb. (11.36 kg) bag with handle GEM25ABKT - 25-lb. (11.36 kg) plastic bucket
Standards Applied:	IEC 62561-7 (2011) - Lightning Protection System Components (LPSC) - Part 7: Requirements for Earthing Enhancing Compounds
Criteria:	Passed Leaching per EN 12457-2 method Passed Sulphar per ISO 14869-1 method Resistivity is less than 2 otherwards are a bea-electrode method Corrosion passed per ASTM G59-97 and G102-89 method
We declare that, on the date the devi product conforms to all the technic	, ce accompanied by this declaration is placed on the market, th all and regulatory requirements of the above listed standard.
Name, Rie, and signature:	Thomas Bockstoce Project Engineer, Product Development
	(Signature) (Date)

Requirements for Earthing Enhancement Compounds

Presenter: Rohit Narayan Author: Dale Boling, PE

March 25, 2014

