Semiconductor Protection Devices

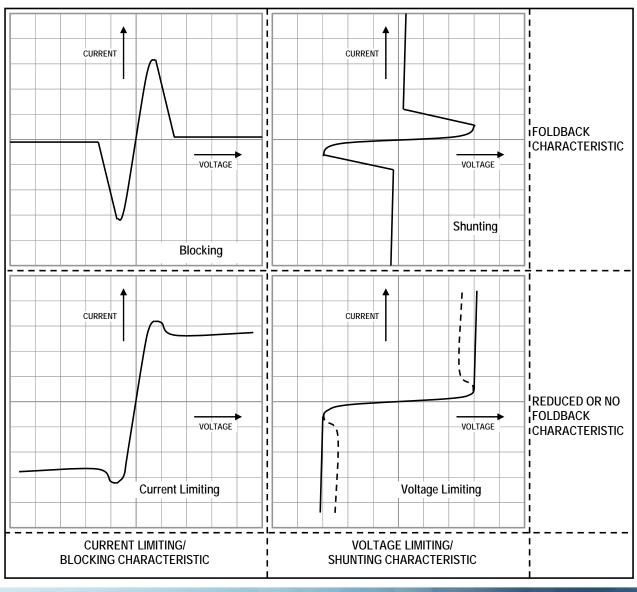
General and Specific

Len Stencel, Applications Manager

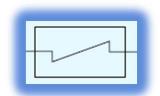
BOURNS®

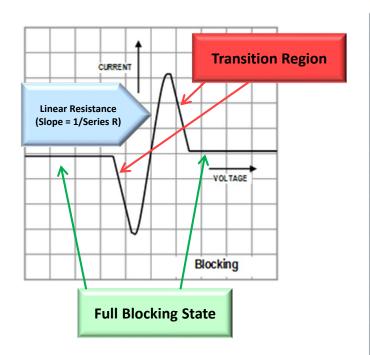

Two General Types of Semiconductor Protection Devices

- Shunting (shorting)
 - Limits Voltage (<u>Crowbar</u> or <u>Clamp</u>)
 - Parallel Connection



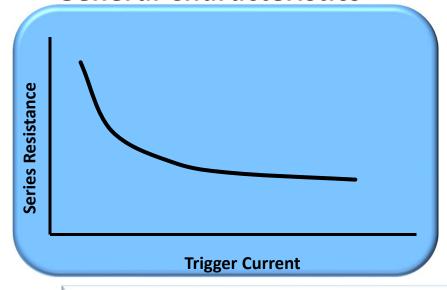
- Low (dynamic) resistance when triggered
- Limiting (ECL)
 - <u>Limits</u> or <u>Blocks</u> Current
 - Series Connection
 - Low resistance below trigger point
 - High resistance when triggered

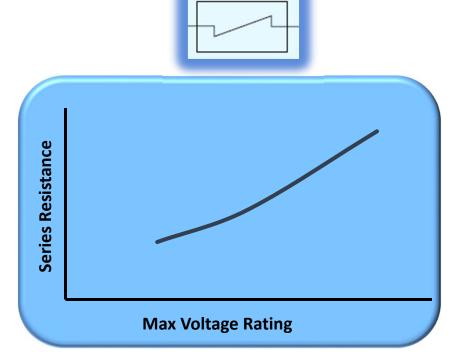




General Characteristics of the Device Types

Blocking Devices General Characteristics

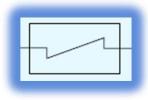




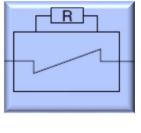
Bidirectional Device

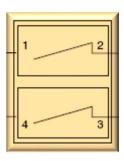
- Linear Resistance Region
 - Very linear response when not triggered
 - Behaves like a resistor
- Transition Region
 - In general, the device should not be continuously operated in this region
 - Power dissipation is the primary concern
- Full Blocking State
 - Low quiescent current
 - Provides voltage isolation up to rated voltage

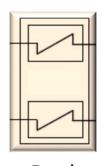

General Characteristics

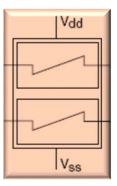


- Series Resistance
 - Lower for higher trigger current level devices with same voltage rating
 - Higher for higher voltage rating devices with same trigger current
- Trigger Current
 - Ranges from 50 mA to more than 500 mA
 - Devices can be paralleled for higher current capability (and lower resistance)
- Max Voltage
 - Ranges from 20V to 850V

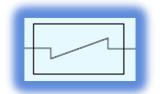

What's Available? Configurations


Single Unidirectional


Single Bidirectional


Programmable
Single
Bidirectional

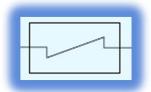
Dual Unidirectional



Dual Bidirectional

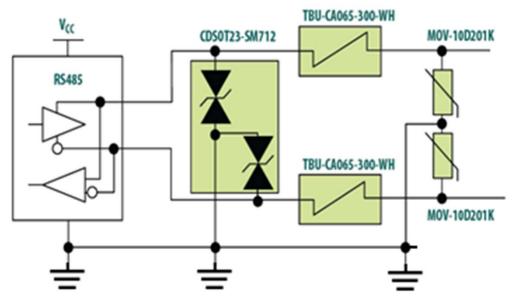
Dual Bidirectional w/Voltage Control

What's Available?


Category	Max Voltage (V)	Trigger Current (mA)	Series Resistance (Ω)	Response time (ns)	Package
Low Voltage	20 - 40	150-240*	3.6 - 6.5	60 - 200	SOT23, DFN
High Voltage	250 - 850	50 – 500*	2.6 - 22	1000	DFN
Application Specific	250 - 850	50 – 500*	50, 80	1000	DFN

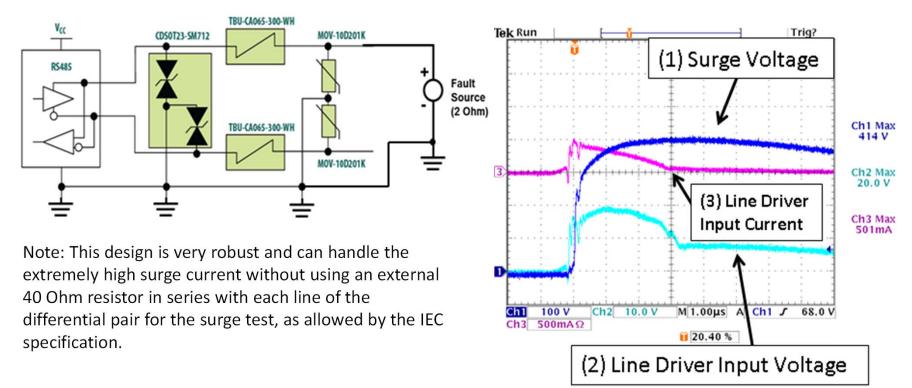
^{*} Several fixed values are available within this range. A programmable device is also available for the high voltage devices.

Notes:


- 1. Unidirectional and Bidirectional devices are available
- 2. Response time is from the trigger point to the full blocking state. The device limits current during this transition.

Applications

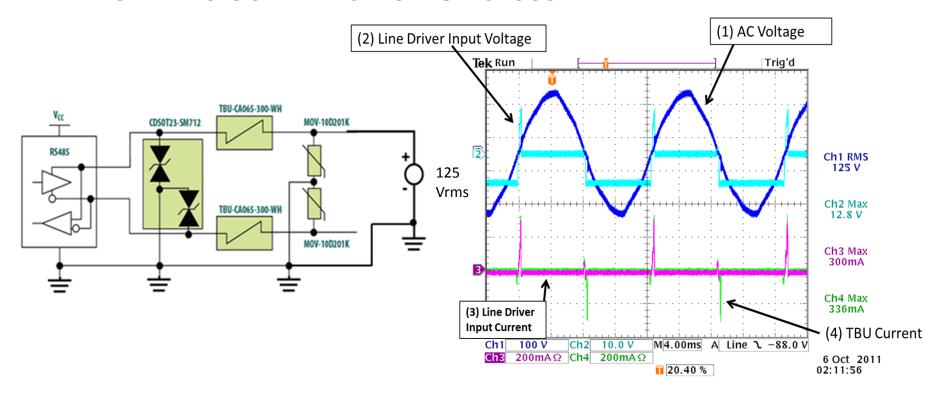
- Voice Lines
 - SLIC Protection
- Low and High Speed data communication Lines
 - Ethernet
 - XDSL
 - RS-485
 - 4-20ma Current loop
- Protection modules and dongles
- Process control equipment
- Test equipment


Application Example: RS-485 Advanced Circuit Protection Ultimate Protection Using a Blocking Device

Test Performed	Standard	Level	Notes	Pass/Fail
Surge	IEC 61000-4-5	1, X	Level X=5 kV; 1.2/50 μs, 8/20 μs	Pass
Power Cross	N/A	N/A	125 Vrms, continuous protection	Pass
ESD				
- Air Discharge	IEC 61000-4-2	1,2,4,X	Level X= 16 kV	Pass
- Contact Discharge	IEC 61000-4-2	1,2,3,4	Up to 8 kV	Pass
EFT (Modified, Direct Connect)	IEC 61000-4-4	4	2 kV, 100kHz	Pass

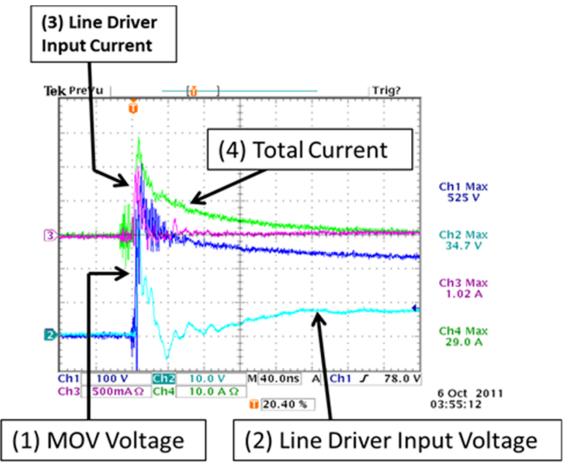
RS-485 Advanced Circuit Protection

5 KV Positive Surge per IEC61000-4-5



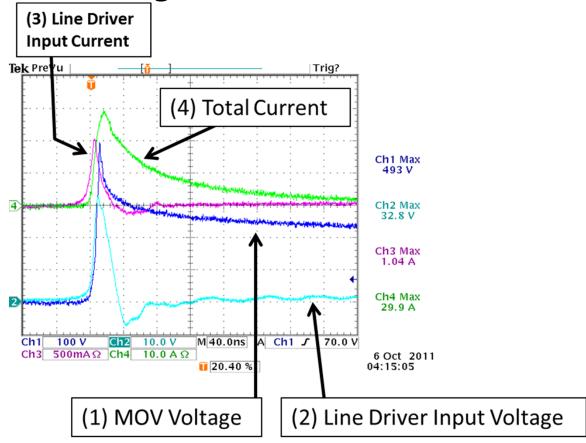
The peak current into the transceiver is held to ~500 mA and is reduced to the very low quiescent level (<1 mA) of the Blocking Device in about 3 μ s.

RS-485 Advanced Circuit Protection


125 Vrms 60 Hz AC Power Cross

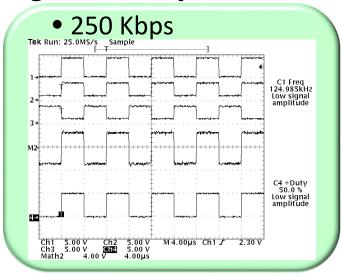
The current into the protected device is limited to short duration current pulses with a peak value of ~300 mA as it transitions between normal operation and the blocking state.

Bourns RS-485 Advanced Circuit Protection


8 kV Contact Discharge ESD Protection

The current into the protected device is limited to just over 1 A, a fraction of the 29 A peak current from the ESD event.

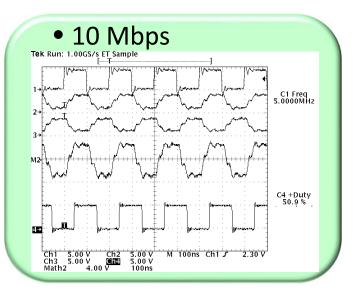
Bourns RS-485 Advanced Circuit Protection

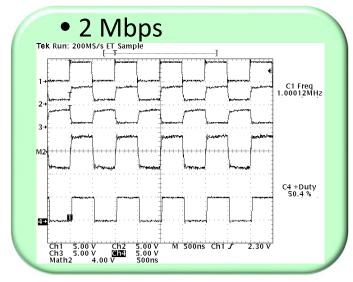

16 kV Air Discharge ESD Protection

The current into the protected device is limited to just over 1 A, a fraction of the 30 A peak current from the ESD event.

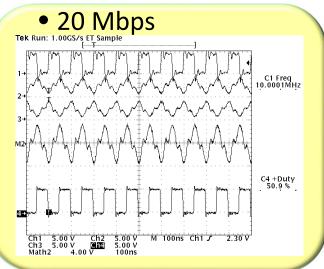
Application Example: RS-485

Signal Quality


CH1 = Txin

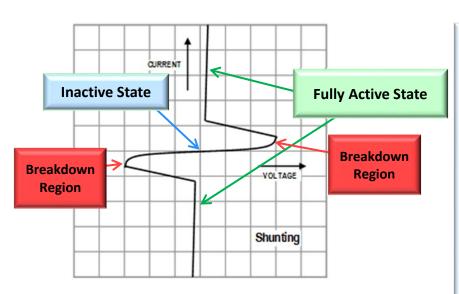

CH2 = A,

CH3 = B


M = A - B,

Ch4 = RXout

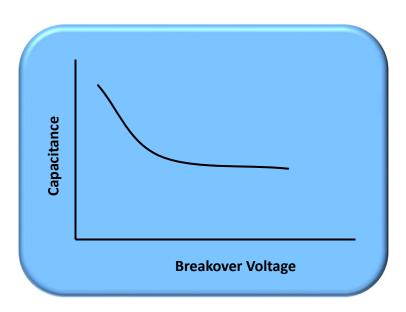
Test: Two boards connected together with 1 foot of twisted pair and 120 ohm termination at each end.

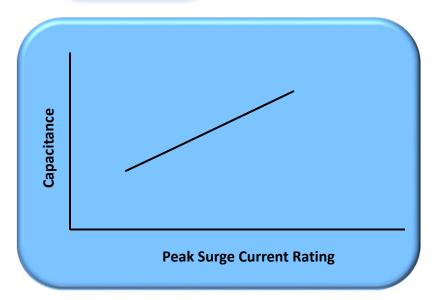

RS-485 Advanced Circuit Protection

Test Results Summary

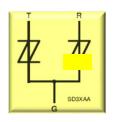
- The blocking device used in conjunction with the TVS diode and the MOV provides a high level of protection:
 - 5 kV Surge Protection (IEC 61000-4-5)
 - 125 Vrms Power Cross Protection
 - 8 kV contact and 15 kV Air Discharge ESD Protection (IEC 61000-4-2)
 - Level 4 (2kV) Electrical Fast Transient (EFT) Protection (IEC 61000-4-4)
- Signal quality was excellent up to a 2 Mbps data rate and acceptable out to 10 Mbps
 - Performance at 20 Mbps could be improved by replacing the MOV with a GDT to reduce the capacitive load on the line

General Characteristics: Crowbar


Bidirectional Device


- Inactive State
 - Looks like a high impedance load
 - Primarily a capacitive load
- Breakdown Region
 - Voltage clamping action before switching to the low voltage state
- Fully Active (Low Voltage) State
 - When the breakover current level is reached the device will switch to the low voltage state
 - A minimum current (hold current) is required to remain in this state

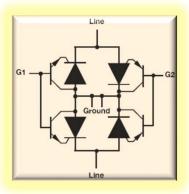
General Characteristics: Crowbar

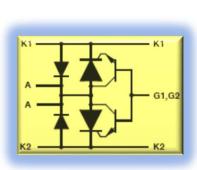

- Capacitance
 - Decreases as breakover voltage is increased
 - Increases as surge current capability is increased
- Maximum Peak Pulse Current Rating
 - Up to ~200 A for the 10/1000 μs waveform
- Breakover Voltage Range
 - 15 V to 600 V

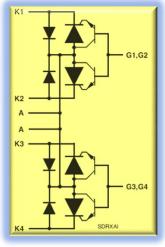
What's Available

T R G

Single Bidirectional

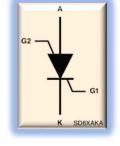

Dual Bidirectional


Triple Element


Triple Element

Single Unidirectional

Dual Unidirectional



G — SDBXAA

Gated Unidirectional

Dual Gate Unidirectional

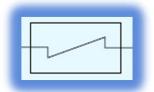
Dual Complementary Gate

Dual Gated w/Anti Parallel Diodes

Quad Gated w/Anti Parallel Diodes

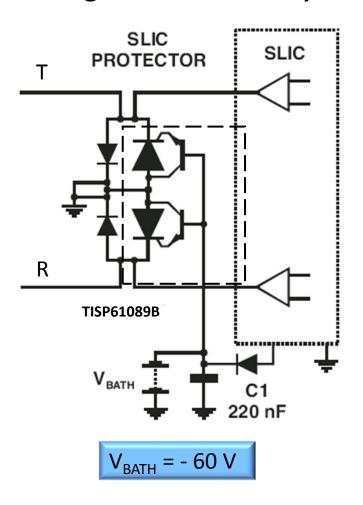
Note: This is not an exhaustive survey.

What's Available


Category	Туре	I _{PPM} (A) 10/1000 μs	V _{DRM} (V)	Capacitance (pF)	I _H (mA)	Package(s)
Low Current, Fixed Voltage	Unidirectional, Bidirectional, Single/Dual	18 - 80	8 - 550	3.3 - 150	10 - 150	SOT23-5, SMA, SMB, SOIC (8), DO- 15, QFN, TO220
High Current, Fixed Voltage	Unidirectional, Bidirectional, Single/Dual	100 - 200	58 - 550	35 - 300	50 - 225	SMB, TO-92, QFN, TO-220
Programmable*	Single, Dual, Quad	20 -150	90 - 250	32 - 100	20 - 180	SOIC (8), MS-013
Triple element	Delta, "Y" config.	30 - 45	8 - 270	17 - 50	30 - 150	SOIC (8)

^{*} With and without antiparallel diode, single and dual polarity are available

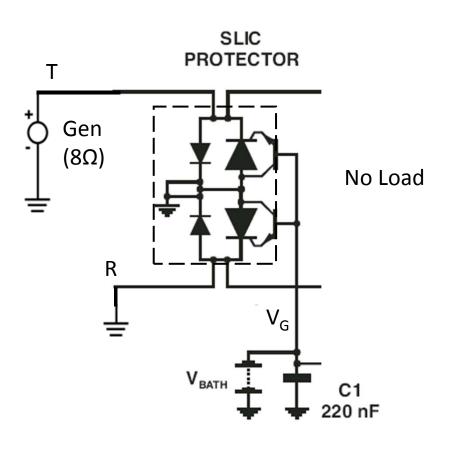
Note: This is not an exhaustive survey.

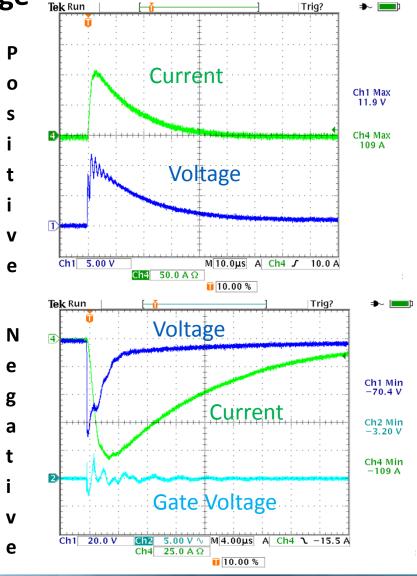

Applications

- Primary and Secondary Protection
- SLIC Protection
- Signal, Data and Control Lines
 - Ethernet
 - ISDN
 - RS-232
 - XDSL
 - RS-485
 - 4-20ma Current loop
- Process control equipment
- Test equipment

Application Example

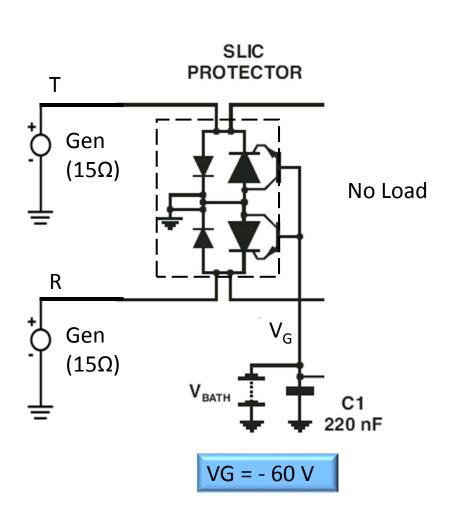
Programmable Thyristor for SLIC Protection

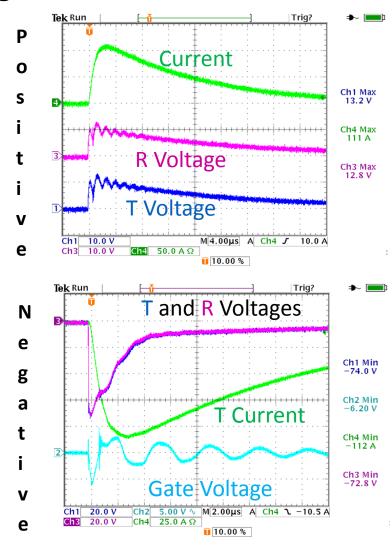



GR1089 Intrabuilding Lightning Protection								
Test connection	Waveshape	Open-Circuit Voltage (V)	Short-Circuit Current (A)	Generator Resistance (Ω)				
Transverse	2/10 μs	800	100	8				
Longitudinal	2/10 μs	1500	100	15				

- No series resistor is shown.
- If a series resistor is required the peak current into the protector will be lowered.
- For example, if an 8 Ohm series resistor were used, the current for the Transverse and Longitudinal tests would be reduced to 50 A and 65 A (2 x 65), respectively

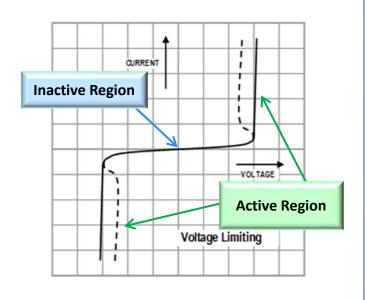
SLIC Protection


800V, 100A 2/10 μs, Transverse Surge



SLIC Protection

1500V, 2/10 μs, Longitudinal Surge

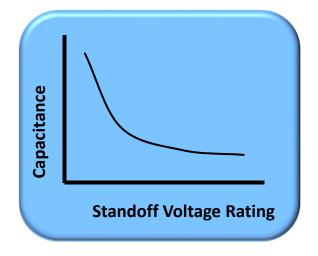


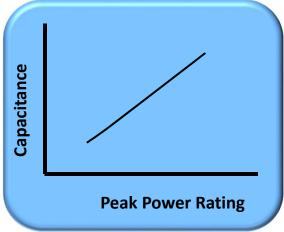
Programmable Thyristor

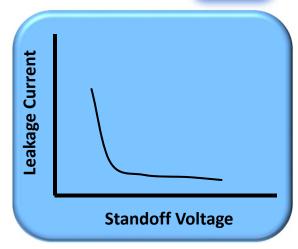
Test Results Summary

- The Intrabuilding lightning test per GR1089 was performed with no series resistance
 - Transverse (2/10 μs, 800 V, 100A)
 - Positive Direction Clamp voltage was 11.9V for 109 A of surge current
 - Negative Direction Clamp voltage was -70.4 V for -109 A of current (Note that the gate voltage dropped 3.2 V)
 - Longitudinal (2/10 μs, 1500 V, 100A)
 - Positive Direction Clamp voltage was 12.8. to 13. 2 V for 111 A of surge current
 - Negative Direction Clamp voltage was -72.8 to 74.0 V for -112 A of current (Note that the gate voltage dropped 6.2 V)

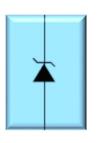
Voltage Limiting Devices (TVS Diodes) General Characteristics

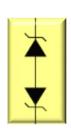

Bidirectional Device


— — — Device with Foldback

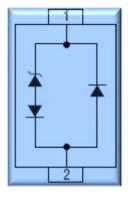

- Inactive Region
 - 0 V to working (standoff) voltage in each direction for a bidirectional device
 - Primarily a capacitive load
- Active Region
 - Clamping/Breakdown
 - Voltage continues to increase as current increases
 - Some devices have significant foldback
 - e.g. punch-through diodes

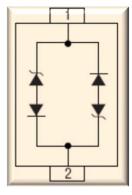
General Characteristics (Unidirectional Devices)

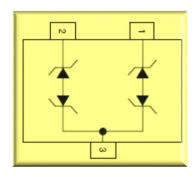


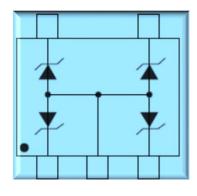


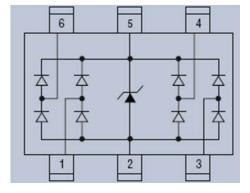
- Capacitance decreases as the standoff voltage capability of the diode is increased
- Capacitances increases as the peak power capability of the diode is increased
- Leakage current increases as the standoff voltage is reduced (especially levels ≤ 3.3 V)


What's Available? Sample of Available Configurations




Bidirectional


Unidirectional w/Steering Diodes


Bidirectional w/Steering Diodes

Dual Bidirectional

Quad Unidirectional

Quad Unidirectional w/Steering diodes

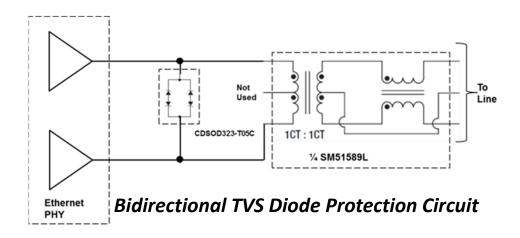
Note: Devices are available to protect 1, 2, 4, 5, 6, 8 or more lines

What's Available?

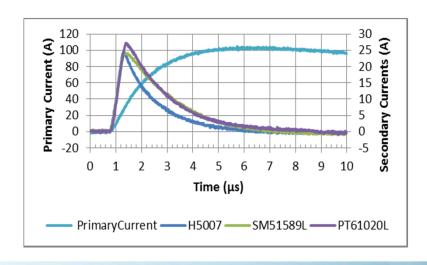
	Discrete TVS Diodes										
Category	Type	P _{PPM} Range (W)*	V _R Range (V)	Capacitance (pF)	Packages	Notes:					
Low Power	Unidirectional, Bidirectional	<u>≤</u> 500	2.5 - 36	1 - 500	0402, 0603, 0805, SOD- 323, SOD-523, SOT-23	Steering diodes are used to achieve low capacitance					
Medium Power	Unidirectional, Bidirectional	600 - 3,000	5 - 170, 400	20 - 10,000	SMA, SMB, SMC,	Bidirectional devices have lower capacitance than unidirectional devices					
High Power	Unidirectional, Bidirectional	5,000-30,000	28 - 300	80 - 30,000	SMC, Axial lead	Bidirectional devices have lower capacitance than unidirectional devices					
Very High Power	Unidirectional, Bidirectional	> 30,000	15 - 470	2,000 - 12000	Axial Lead, Surface Mount	1,3,6,10 and 15 kA devices					

	TVS Diode Arrays									
Category	Capacitance Range(pF)	# of Lines	I _{PPM} Range (A)*	V _R Range (V)	Packages	Notes:				
Ultra Low Capacitance (≤3 pF)	0.25 - 3	2, 4, 6, 7	1-25	2.8 - 5	SOT-143A, SC70-6, DFN-10, SOT23-6, SOT563, DFN-6, DFN-10, SC-89, SC-75	Steering diodes are used to achieve low capacitance				
Low Capacitannce (<u><</u> 10 pF)	3.5 - 10	2, 4, 6, 8	2 - 40	2.8 - 12	SOT-143A, SO-8, SOT353, SLP2020P6, DFN-10, SLP3020N10	Steering diodes are used to achieve low capacitance				
High Capacitance (> 10 pF)	12 - 500	2, 4, 5, 6, 7, 8	7-100	3 - 36	SOT-23, SO-8, SO-16, SOT-563	Steering diodes are used to achieve low capacitance , Unidirectional devices without steering diodes have higher capacitance				

Note: This is not an exhaustive survey.



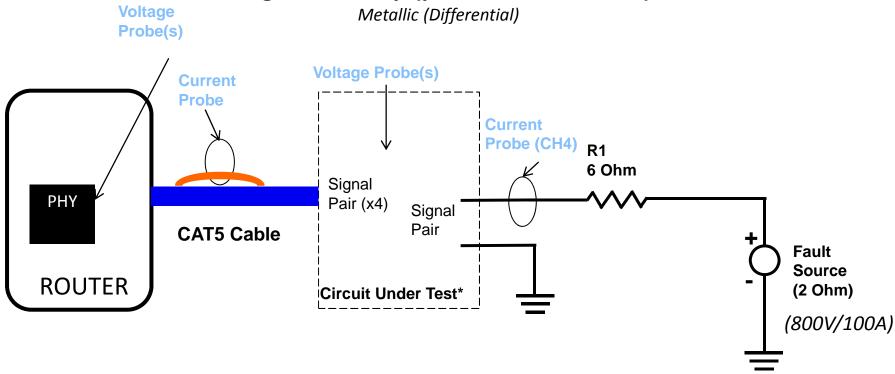
Applications


- Primary and Secondary Protection
- Signal, Data and Control Lines
 - Ethernet
 - USB
 - HDMI
 - XDSL
 - Thunderbolt
- Power Port Protection
 - AC and DC power lines
- Process control equipment
- Test equipment

TVS Diode Application Example

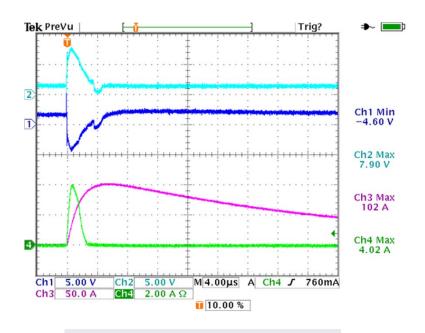
Ethernet: GR1089 Port Type 4 Lightning Protection

Ethernet Transformers (1.2/50 μs, 8/20 μs Combination Wave)


With Secondary Shorted

- Secondary Current is reduced by about a factor of 4
- Duration of Surge current is reduced

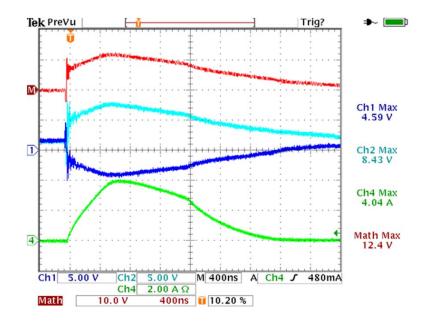
TVS Diode Application Example


1.2/50 μs, 8/20 μs Combination Wave Test Circuit

Surge Test Setup (per GR-1089-ISSUE6)

A Gigabit router was used as the load. The on board transformer was replaced with shorts and the evaluation board was connected to the router with a 3 inch long CAT5 cable. Part of the casing was removed from the cable so that a current probe could be attached to the line under test. For this test, one line (1/2 of a signal pair) is tested at a time with the other seven lines grounded.

Application Example: Ethernet TVS Diode Circuit, 1.2/50 μs, 8/20 μs Combination Wave Test



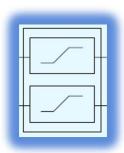
CH1 = PHY - VOLTAGE

CH2 = PHY + VOLTAGE

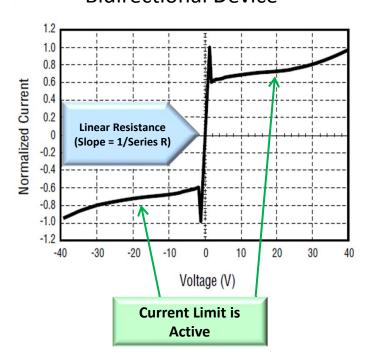
CH3 = Total Surge CURRENT

CH4 = PHY INPUT CURRENT

Peak Voltage: 12.4 V

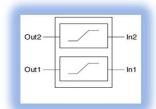

Peak Current: 4 A

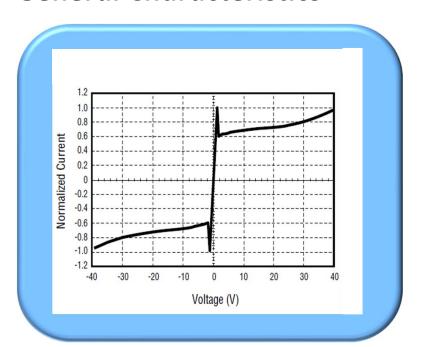
Energy: ~ 50 μJ

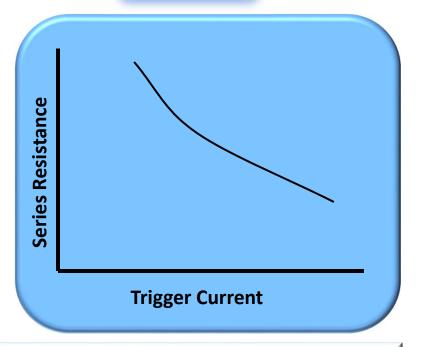

TVS Diode Circuit Test Results Summary

- GR1089, Port type 4
 - Metallic (1.2/50 μs, 8/20 μs, 800 V, 100A)
 - Voltage across the PHY differential input is limited to 12.4 V
 - Current into the PHY is limited to just over 4 A
 - Energy PHY is subjected to is limited to ~50 μJ

Current Limiting Devices

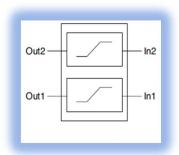

Bidirectional Device




- Linear Resistance Region
 - Very linear response when not triggered
 - Behaves like a high quality resistor
- Current Limiting State
 - Limits to a predetermined level
 - Provides voltage isolation up to rated voltage

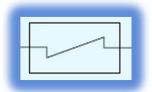
Current Limiting Devices

General Characteristics



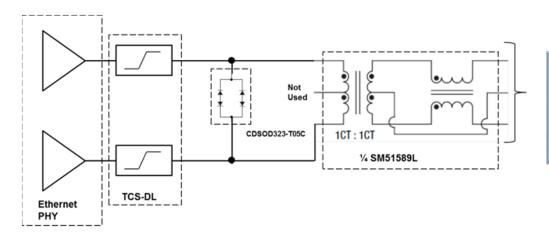
- Devices exhibit 30-40% of foldback from the peak current
- The current level increases as the voltage across the device is increased
- Series resistance decreases as the trigger current value of the device is increased

Current Limiting Devices *What's Available?*

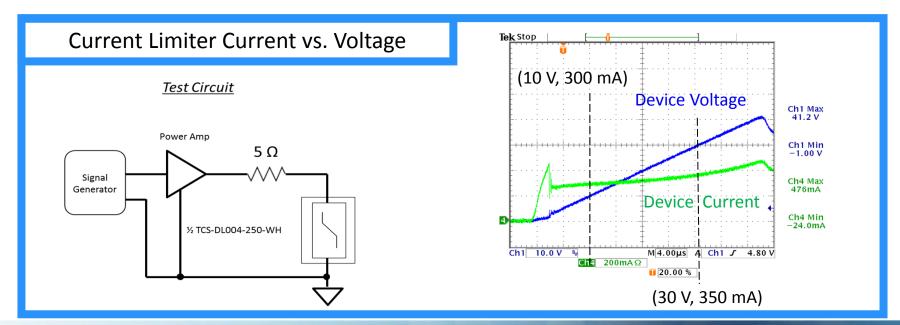

		Trigger Current (mA)			Series	Channel to Channel	
Type	Package Style	Min.	Nom.	Max		Resistance Match	Max Voltage (V)
Dual Channel	DFN 2.5 x 4 mm	250	<i>375</i>	500	2.3 Ω	<u>+</u> 0.05 Ω	40
Dual Channel	DFN 3.5 x 4 mm	500	750	1000	1.4 Ω	<u>+</u> 0.03 Ω	40
Dual Channel	DFN 4.5 x 4 mm	<i>750</i>	1125	1500	1.0 Ω	<u>+</u> 0.02 Ω	40

Notes:

1. All devices are Bidirectional

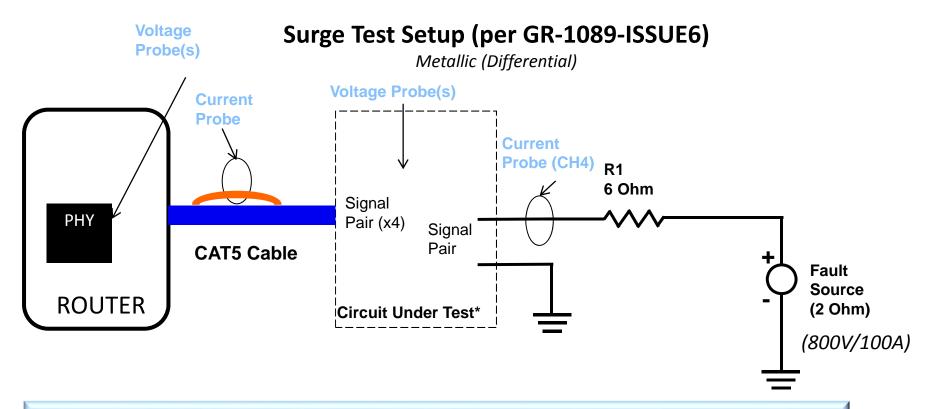

Current Limiting Devices

Applications



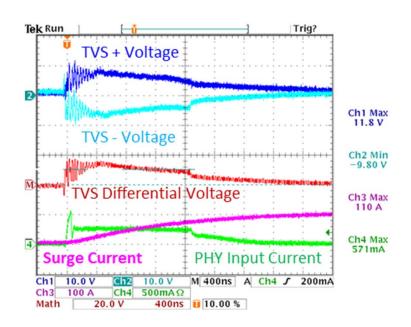
- Low and High Speed data communication Lines
 - Ethernet
 - xDSL
 - RS-485
 - 4-20ma Current loop, HART Modem
- Protection modules and dongles
- Process control equipment
- Test equipment

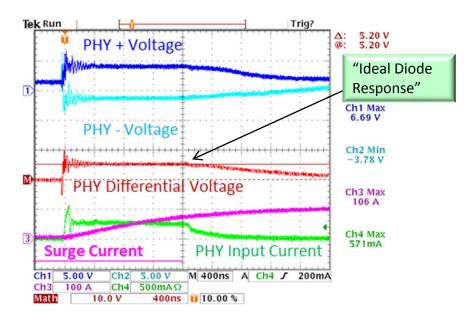
Current Limiter with TVS Diode



- SM51589L Ethernet Transformer
- CDSOD323-T05C TVS Diode
- TCS-DL004-250-WH Transient Current Suppressor

Current Limiter with TVS Diode


1.2/50 μs, 8/20 μs Combination Wave Test Circuit


A Gigabit router was used as the load. The on board transformer was replaced with shorts and the evaluation board was connected to the router with a 3 inch long CAT5 cable. Part of the casing was removed from the cable so that a current probe could be attached to the line under test. For this test, one line (1/2 of a signal pair) is tested at a time with the other seven lines grounded.

Current Limiter with TVS Diode

1.2/50, 8/20 μs CW Surge Test (800 V/100 A), Metallic

TVS Peak Voltage: ~15 V

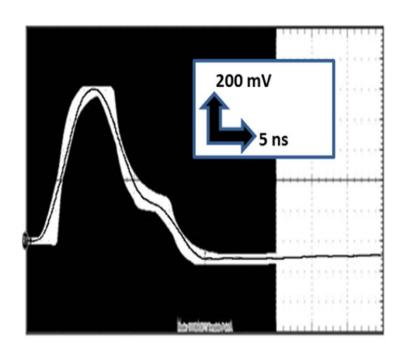
Peak Voltage: 5.2 V
PHY sees: Peak Current: 571 mA

Energy: ~ 3 μJ

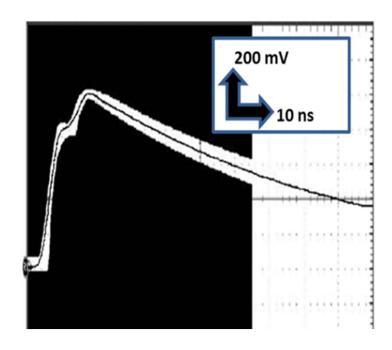
Current Limiter with TVS Diode

GbE Signal Amplitude and Template Tests per IEEE802.3

Line Pair	Point	TVS diode Only (mV)	% Peak voltage difference Between Points A and B	TCS-DL004-250- WH and TVS diode (mV)	% Peak voltage difference Between Points A and B	Loss due to TCS™ (dB)
1	Α	768.7	0.720/	754.1	0.49%	-0.17
	В	763.1	0.73%	750.4	0.49%	-0.15
2	Α	760.7	0.50%	746.5	0.44%	-0.16
	В	756.9	0.50%	743.2	0.44%	-0.16
3	Α	772.4	0.06%	759.9	0.13%	-0.14
5	В	771.9	0.06%	760.9	0.13%	-0.12
4	Α	768.7	0.000/	754.5	0.769/	-0.16
4	В	762.0	0.88%	748.8	0.76%	-0.15

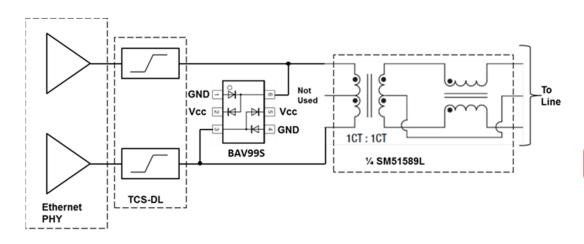

Notes:

- 1. The required amplitude range for the signal at points A and B is 670 mV to 820mV.
- 2. The % peak voltage difference between points A and B must be < 1 %

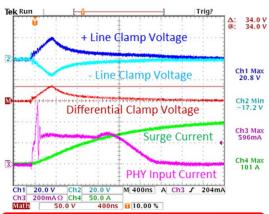

The loss due to the addition of the Current limiting device results in < 0.2 dB of attenuation. This is equivalent to less than 1 m of CAT5 cable.

Current Limiter with TVS Diode

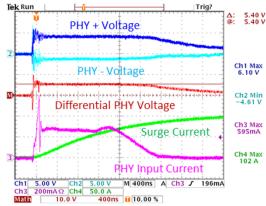
GbE Signal Amplitude and Template Tests per IEEE802.3



Point A Template Test



Point F Template Test


Current Limiter with Steering Diodes

- SM51589L Ethernet Transformer
- BAV99S Clamp Diodes to Supply and Ground
- TCS-DL004-250-WH Transient Current Suppressor

Diode Clamp Voltage: ~34 V

Peak Voltage: 5.4 V

PHY sees: Peak Current: 595 mA

Energy: ~ 3 μJ

Summary: Protecting a PHY Using a Current Limiter

Test	Protection Circuit	Diode Clamp Differential Voltage (V)	PHY Differential Input Voltage(V)	PHY Input Current	Estimate of Energy Absorbed by PHY (µ J)
Differential Surge	TVS Diode Only	12.4	12.4 (same)	4A peak	54
Test per GR-1089- CORE-ISSUE 6 (800V/100A)	TVS Diode with Current Limiter	~15	5.2	<300mA*	3
	Steering diodes with Current Limiter	34	5.4	<300mA*	3

^{*} After initial peak

- The current limiter reduces the current seen by the PHY signal inputs
 - After the initial peak, current is reduced by over 90 %.
- The current limiter also isolates the PHY inputs from the voltage across the TVS diode or steering diodes
 - Peak PHY input voltage is determined by its ESD protection and the current through the TCS-DL device. In this case the voltage level is reduced by over 50 %.
- The energy the PHY had to absorb was reduced by more than 90 % compared to using a TVS diode alone
- All designs pass IEEE802.3 signal amplitude and template tests

General Summary

Semiconductor Protection Technology

				Performance						
Туре	Subtype	Technology	Limiting Speed	Precision	Impulse Capability	Parallel Capacitance	Series Resistance			
Shunt	Crowbar	Thyristor			—		NA			
Shunt	Clamp	TVS Diodes	Best	Best	—	•	NA			
Shunt	Clamp	TVS w/steering Diodes	Best	Best	→	Best	NA			
Shunt	Clamp	Power TVS Diodes	Best	Best	Best	•	NA			
Blocking	Full Block	TBU®	—	-	Best	NA	-			
Blocking	Limiter	TCS™	Best	\rightarrow	Best	NA	—			

