New Form Factor Integrated GDT + MOV

Thomas Tran

Electrical Protection of Communications Networks

March 5-7, 2019 Northbrook, IL

What is a Gas Discharge Tube, GDT?

A voltage-activated electric switch made by sealing a gas mixture between metal electrodes in a ceramic body.

What is an Metal Oxide Varistor, MOV?

A voltage clamp made from a doped zinc oxide ceramic disk with and electrode on either side.

Issues With Standard MOV Solutions

- MOV degradation
- Ring-Wave requirements (UL 864)
- "Lost Neutral" test
- High capacitance (PLC)

Current solution?

- Thermally protected MOVs were invented to solve the problem with the thermal runaway of the MOV.
- Sounds like a good solution, why fix it?
 - "Protected" equipment is left fully exposed after thermal fuse operates
 - Breaking DC Current

тсо

 A good reference video: https://www.youtube.com/watch?v=Zez2r1RPpWY

Is there another solution?

 Yes - a series combination of a GDT and an MOV into a single component

How does a GDT+MOV Protect?

High-frequency C/(c +C) capacitive or lowfrequency R/(r +R) voltage division results in most of the voltage appearing across the GDT

- At slow rates of voltage rise (<100 V/s) GDT has most of the voltage across it due to resistive division.
- At fast rates of voltage rise (>1 V/us) GDT has most of the voltage across it due to capacitive division.

*Graph is courtesy of Mick Maytum, update for IEEE 62.42.1

GDT + MOV Discrete Measurements

GDT + MOV Measurements under 8/20 µs Combination Wave Generator @ 1.5 kA

GDT+MOV Front Protection Voltage Waveform

Put It All Together

Technology Comparison

Technology	Clamp Voltage	Leakage Current	Aging	UL1449 Lost Neutral
Standard MOV	340	High	Short Life	No
Thermally Protected MOV	340	High	Short Life	Yes
High voltage MOV	710	Medium	Medium Life	Yes
GDT+MOV	~360	Low	Long Life	Yes

What are the advantages?

- Very low capacitance
- Very high insulation resistance
- Virtually no leakage current, which extends the life of the product
- Failure Mode: The MOV will fail short, but the GDT will still continuing to provide protection

MOV: Forced Failure Mode (14mm)

Applied 3.3 kA Combination Wave and switch in MCOV within 1 second

MCOV = Maximum Continuous Operating Voltage

GDT+MOV: Forced Failure Mode (14mm) Applied 3.3 kA Combination Wave and switch in MCOV within 1 second

MOV Shorted GDT Normal 10 A Fuse Normal

End of Life Videos

Summary

Why is this better?

- The GDT prevents leakage through the MOV
- The MOV prevents follow-on current through the GDT
- The GDT allows the pair to operate at higher temperatures
- GDT+MOV Component will pass the Ring Wave requirement.
- The series combination results in a very low capacitance
- Virtually no leakage current, which extends the life of the product
- Failure Mode: The MOV will fail short, but the GDT will still continuing to provide protection
- Space-saving package fits into conventional MOV radial package profile.

Thank You

