
NEXT GENERATION PREMISE NETWORKS

Products. Technology. Services. Delivered Globally.

MORE THAN A DISTRIBUTOR

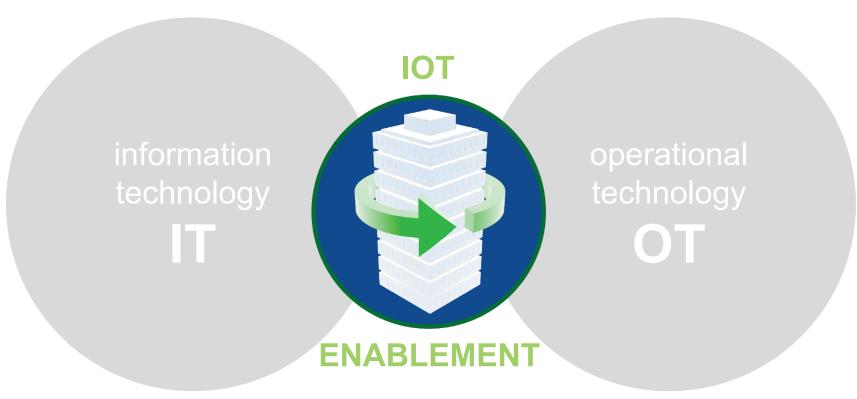
Anixter helps **build**, **connect**, **power** and **protect** valuable assets and critical infrastructures around the world. For more than 150,000 customers in 50 countries, Anixter is more than a distributor: **we are a business partner**.

MARKETS WE SERVE INCLUDE: Contractors/integrators Commercial building Data centers Education Finance Government Healthcare Manufacturers Marine/shipboard Natural resources Power utilities Public safety Retail Transportation

AGENDA

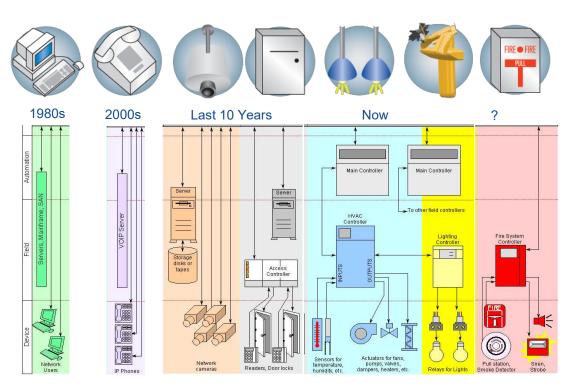
Market Trends

- New applications driving change
- Next generation networks
- Infrastructure Standards Update
 - Data Center
 - Commercial Buildings
- Best Practice Guidelines



By 2020, one in five buildings will be a smart building, supporting **50 billion** connected devices, with cloud-based software and services growing at a rate of **33** percent.

Source: Memoori, Big Data for Smart Buildings: Market Prospects 2015 to 2020.


CONVERGENCE

EVOLUTION OF PREMISE NETWORKS

- Disparate communications cabling and protocols consolidated around Ethernet in 1990s
- Voice systems integrated onto IP-based networks throughout 2000s
- Physical security applications have migrated to network over last 10 years
- Operational Technologies related to lighting, BMS, and industrial control beginning to migrate onto network
- Fire and life safety systems unlikely to fully migrate onto network in the short term

NEW APPLICATIONS DRIVING CHANGE

TODAY'S INTERNET

Smart Homes

- Sensors
- Residential A/V
- Video surveillance

Smart Buildings

- Video surveillance
- Access control
- Professional A/V
- Connected lighting
- IoT (Sensors/analytics)

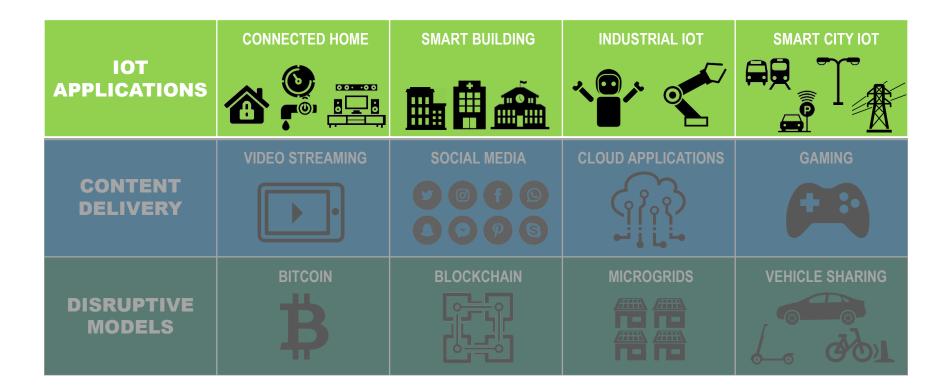
Smart Factories

- IoT (sensors/analytics)
- Cybersecurity

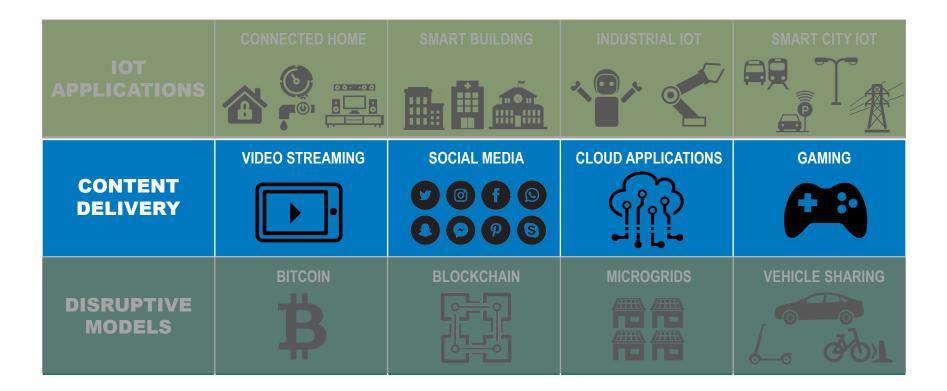
Smart Cities

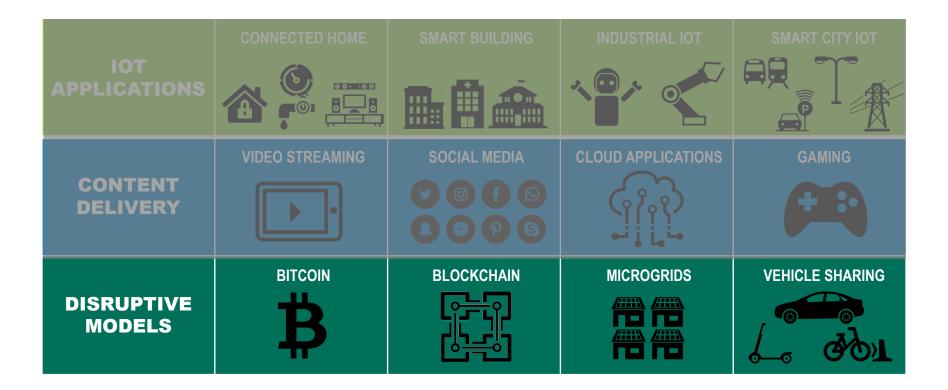
INTERNET WE NEED TO BUILD

- 5G enablement
- Autonomous vehicles
- AR/VR gaming
- IoT (sensors/analytics)
- Cybersecurity



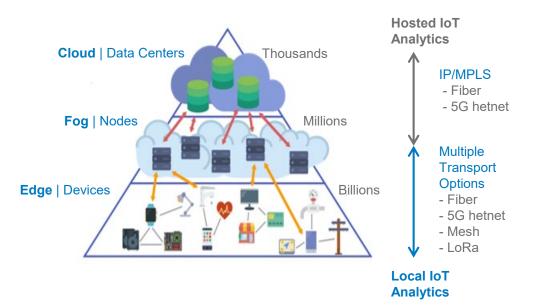
DATA CENTERS


EDGE APPLICATIONS


EDGE APPLICATIONS

EDGE APPLICATIONS

LOWER LATENCY REQUIRES NEW NETWORK ARCHITECTURES – RISE OF EDGE COMPUTING



Where's the edge?

- End user focused
- Device that generates data
- Data center, micro data center, racks, converged appliance

Edge computing

- Extends cloud network, computing, storage services to edge devices
- Fog computing is a derivative approach focused on IoT applications

EDGE DELIVERY METHODS

COMMERCIAL BUILDINGS

STRUCTURED CABLING—PLATFORM FOR IOT

Single Infrastructure to Support Data Communications and Power Delivery

CABLING SYSTEM STANDARDS

ANSI/TIA-568.1-D-2015

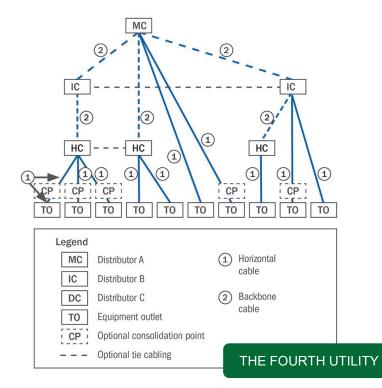
Commercial Building Telecommunication Infrastructure

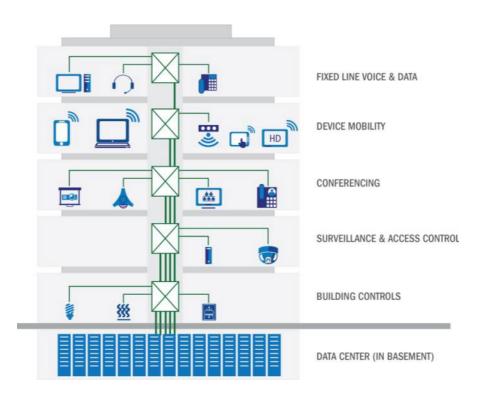
- Equipment Rooms
- Telecommunication Rooms
- Telecommunications enclosures
- Backbone and horizontal Cabling
- Work Area
- Multi-Tenant Building Spaces
- Installation Requirements
- Telecommunicaton Pathways
- Fire stopping and administration

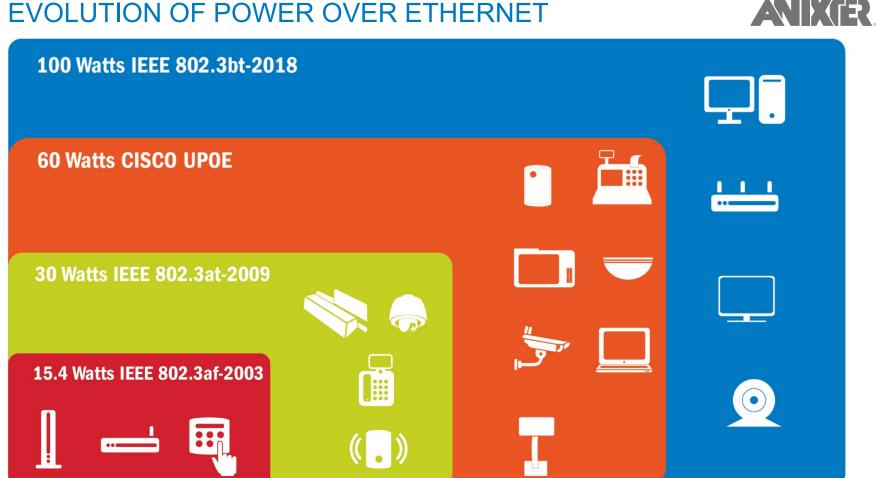
ANSI/TIA-862-B-2016

Structured Cabling Infrastructure Standard for Intelligent Building Systems

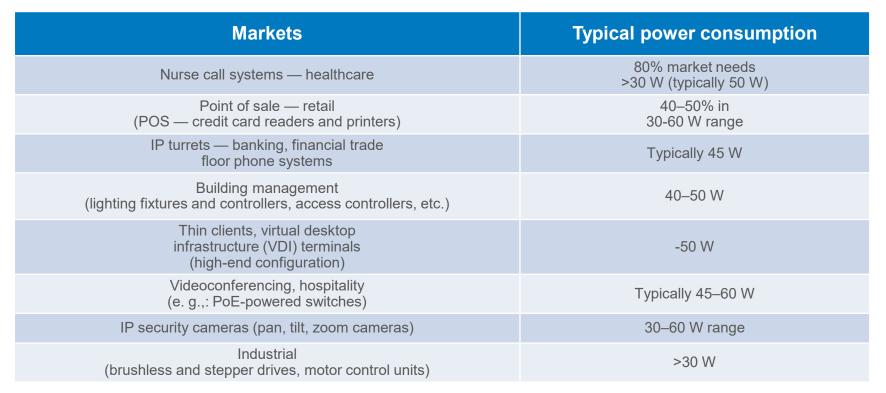
- Cabling System Structure, Topology
- Entrance Fac
- Transmission performance requirements
- Cabling for wireless access points
- / Grounding and bonding


- Power Delivery over balanced twisted-pair cabling
- Distribution rooms
- Zone enclosures
- Administration
- Separation of services
- Optional coverage area topologies
- Low voltage intelligent building systems
- Balanced multipoint data bus





HIGH-PERFORMANCE STRUCTURED CABLING



EVOLUTION OF POWER OVER ETHERNET

IEEE 802.3BT 4-PAIR POWER OVER ETHERNET

Applications Requiring More Than 30 Watts of Power

Source: IEEE 802.3 CFI_02_0313

IEEE 802.3BT 4-PAIR POWER OVER ETHERNET

PoE Capabilities

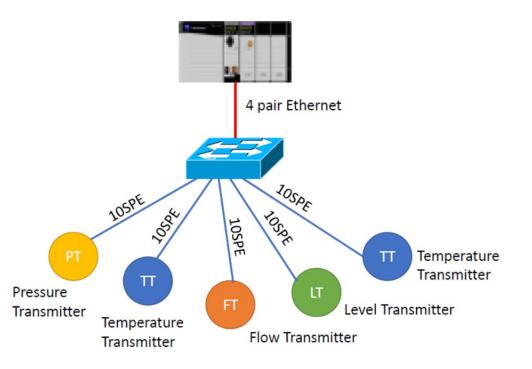
Туре	Standard	PSE Minimum Output Power	PD Minimum Input Power	Cable Category	Cable Length	Power Over
Type 1	IEEE 802.3af	15.4 W	12.95 W	Category 5e	100 meters	2 pairs
Type 2	IEEE 802.3at	30 W	25.5 W	Category 5e	100 meters	2 pairs
Туре 3	IEEE 802.3bt	60 W	51 W – 60 W	Category 5e	100 meters	2 pairs Class 0-4 4 pairs Class 0-4 4 pairs Class 5-6
Type 4	IEEE 802.3bt	90 W	71 W - 90 W	Category 5e	100 meters	4 pairs Class 7-8

PSE – Power Sourcing Equipment PD – Powered Device

Source: IEEE 802.3bt - 2018

IEEE 802.3CG—10 MBPS SINGLE PAIR ETHERNET TASK FORCE

- Target Markets
 - Industrial Automation
 - Building Automation
 - Automotive
- Objectives
 - Support 10 Mb/s operation in automotive and industrial environments (e.g. EMC, temperature) over single balanced twisted-pair cabling.
 - Maintain a bit error ratio (BER) at the MAC/PLS service interface of less than or equal to 10-10 on link segments up to at least 15m, and 10-9 on link segments up to at least 1km
- New TIA project: ANSI/TIA-PN-568.5, "Single Twisted-Pair Cabling and Components Standard" under development



802.3CG DC POWERING USE CASES

- Based on DC Resistance
 Values—18 AWG is optimal for 1km reach
- Copper-Based LC Connector
- Link performance TBD

WIRELESS

Wi-Fi	ZigBee	Technology
		802.11ac
EEE 802.11 a/b/g IEEE 802.11n	IEEE 802.15.4 Highly Scalable, Full Mesh	ZigBee
IEEE 802.11 ac	Topology	Bluetooth 5.
Bluetooth	Cellular	LTE Advanced
Bluetooth BR/EDR Bluetooth Low Energy Bluetooth 5.0	3G 4G LTE 4G LTE Advanced 5G Public Safety Distributed Antenna Systems (DAS)	 5G WiFi and Z Bluetooth 5 residential, Need for ul 5G has pot commercial

Technology	Application	Success Metrics	Data Rate	Range
802.11ac	LAN, Internet	Speed, flexibility	.1-7 Gbps	100m
ZigBee	Sensor Networks	Reliability, power, scalability, cost	.250 Mbps	70-300m
Bluetooth 5.0	Bluetooth 5.0 PAN, Mobile Credentials		48 Mbps	<300m
LTE Advanced	Cellular		3 Gbps	Cellular Network
5G	5G Cellular, Sensor Networks		1-30 Gbps	Cellular Network

- ZigBee are pervasive in commercial building applications
- 5.0 will drive new use cases for mobile appliances in , commercial, and industrial applications
- biquitous cellular coverage driving DAS deployments
- otential to displace incumbent wireless technologies in al buildings

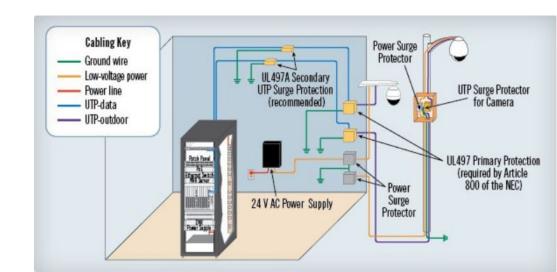
BEST PRACTICES

POWER OVER ETHERNET – ARTICLES 725 AND 800

- Article 725 Class 1, Class 2, and Class 3 Remote - Control, Signaling, and Power-Limited Circuits
 - Class 2 Circuit not to exceed 30VAC, 60VDC, 100VA
 - Due to its power limitations, a Class 2 circuit is considered safe from a fire initiation standpoint and provides acceptable protection from electrical shock
 - Class 2 and 3 systems do not require the same wiring methods as power, light, and Class 1 systems
 - There are cases when a 2-in. separation is required between these systems.

POWER OVER ETHERNET – ARTICLES 725 AND 800

- Article 800 Communications Circuits
 - 840.160 Powering Circuits
 - Communications cables, in addition to carrying the communications circuit, shall also be permitted to carry circuits for powering communications equipment.
 - Where the power supplied over a communications cable to communications equipment is greater than **60 watts**, communication cables and the power circuit shall comply with 725.144 where communications cables are used in place of Class 2 and Class 3 cables.
 - 2020 Code Cycle
 - Harmonization of accepted current (< .3A per conductor) between 840.160 and 725.144
 - Exempts IEEE 802.3af and IEEE 802.3at from additional bundling requirements



RE-THINKING POWER PROTECTION

- Network enabled endpoint device growth will continue
- Class 2 remote powering over communications cabling gaining broad adoption
- Endpoint devices are largely unprotected from power surges and spikes
- Proposed architecture

Prepare your infrastructure as markets transition to new technologies.

- IoT use cases and market applications developing
 - Edge Data Centers
 - Commercial buildings
 - Industrial environments
- Infrastructure standards will facilitate IoT adoption

THANK YOU