The "Latest" on Arc Flash

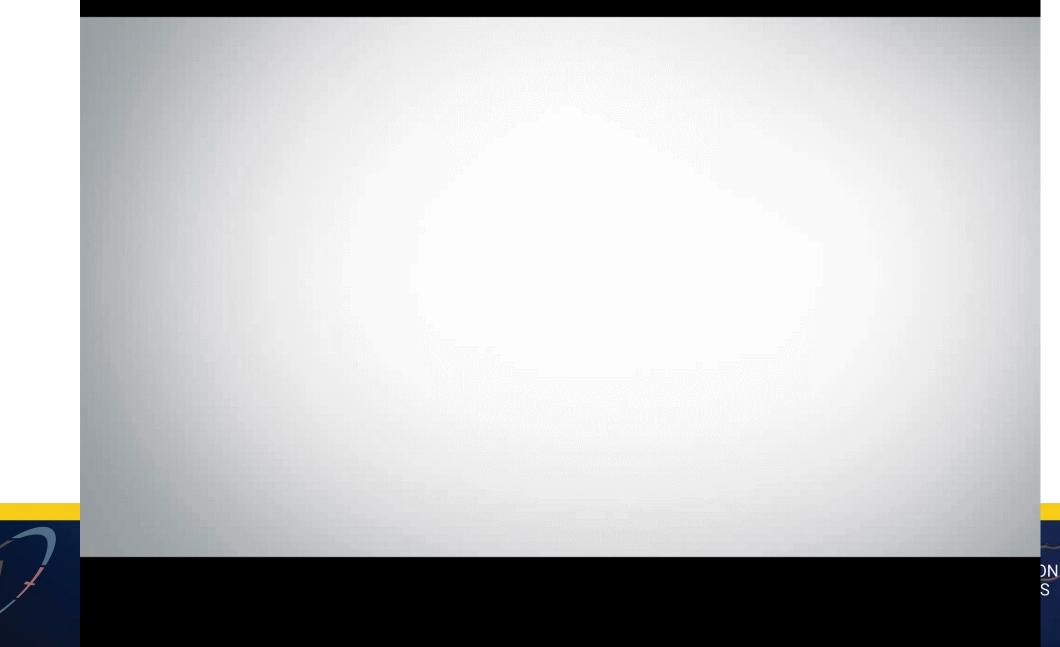
Curtis Ashton

Training Director

American Power Systems LLC (a DC services division of East Penn Manufacturing)

What We Will Cover (Briefly)

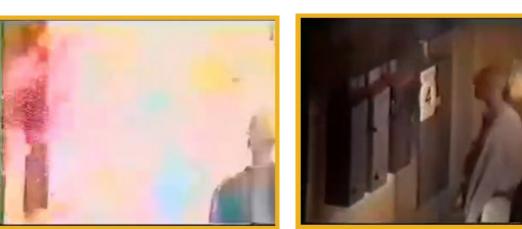
- AC Arc Flash
- Latest DC Arc Flash Testing
 - Leading to NFPA 70E-2024 Changes
 - Better Formulas Coming
 - e.g., IEEE IAS Paper This Year on Modifying Max Power Time and "New" Arc-in-a-Box Multipliers for Arc Flash Boundary
- How the Culture Around Electrical Safety Has Changed
- How to Work Safely
 - Batteries Can't be Made Dead What to Do?
 - Don't "Over"-Protect, Especially when System Proven Ungrounded


It's Just Power...

AC Arc Flash Sample Video

The Power of Electricity

- Shock
 - Current Through Body's Nervous/Vascular, or Across Surface
 - $-\,50~\text{VAC}_{\text{rms}}$ in NFPA 70E or 30 VAC_{rms} in NEC®
 - 70E: 100 VDC < 40 mA (Wet Body?) or 50 VDC (nominal); 60 VDC in NEC®
- Arc-Flash
 - Extremely High Temperature Conductive Gases and Plasma
- Arc-Blast
 - Pressure Wave Caused by Gas Expansion, with Flying Molten Metal
- Thermal Burn (Energy Created by OverHeating

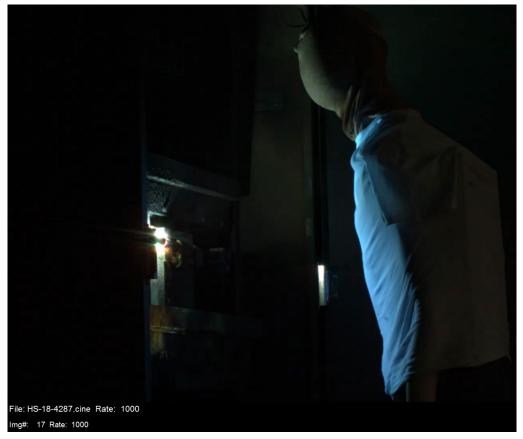


Measurements from an AC Arc-Flash/Blast video

141.5 dBa (instant nerve damage >140) > 437°F

2,160 lbs/ft² pressure wave 122°F under shirt

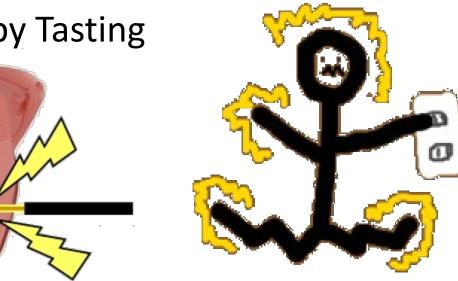
48 VDC Arc Flash Test

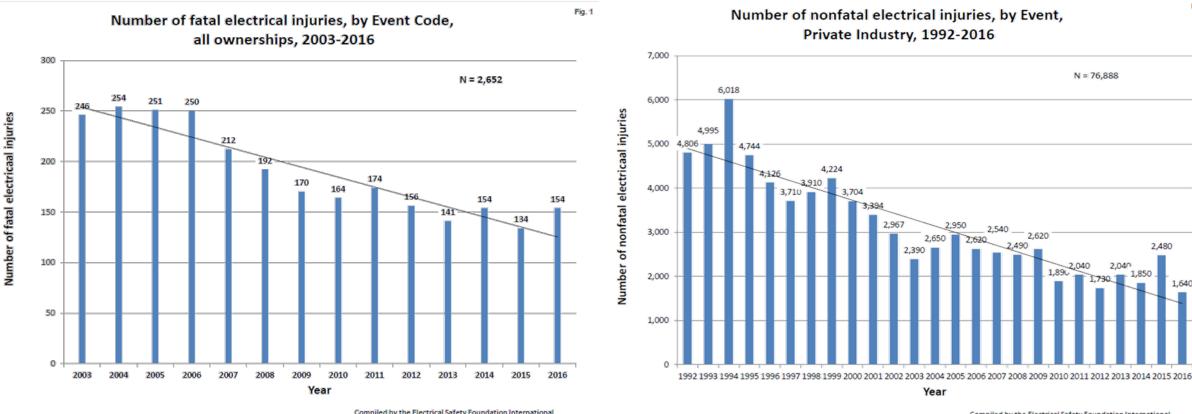

240 VDC Arc Flash Test

480 VDC Slo-Mo Arc Flash Test

The Steve Lenz Story

Electrical Injury Statistics


- Average of 1 Person/Day Electrocuted
 #4 Cause of Workplace Fatalities
- 8,000 Electrical Contact Injuries per Year
 97% of Electrical Workers have experienced a Shock
- 2,000 Burn Center Admissions Per Year from Severe Arc-Flash
- Majority of Electrical Injury Hospital Admits are for Arc Flash
- Arc Flashes Can and Do Kill at Distances of 10 Feet
- 67% of Electrical Injuries are Caused by Unsafe Acts


History of Electrical Injuries

- As Recently as 1953:
 - Presence of Voltage up to 250 V was done by the Finger Test
 - Lower-Voltage Testing was done by Tasting

Electrical Fatality and Injury Trends

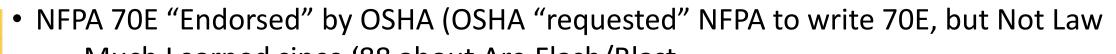
Compiled by the Electrical Safety Foundation International using data from the U.S. Bureau of Labor Statistics, SOII, 1992-2016

Compiled by the Electrical Safety Foundation International using data from the U.S. Bureau of Labor Statistics, CFOI, 2003 -2016

Fig. 6

Definition of Terms

- Arc
 - Continuous Luminous Discharge of Electricity Across (usually Air), usually "Spattering" Metal. Arc has Impedance, thus Arc Current < Bolted Fault Current
- OverCurrent Protective Device (OCPD e.g., Fuse or Circuit Breaker)
 - Opens a Circuit at Excessive Temperatures and/or Magnetic Forces to Protect Downstream Components from Excessive Heating or Burning.
- Clearing Time
 - Time from Beginning of OverCurrent Condition to Final Circuit Interruption. OCPDs determined by I-t curve (hi fault current usually settable for large breakers.
 - Arc Flash Limiting Devices Available from Various Vendors to Shorten Time to Open



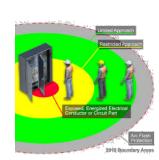
The National Electrical Code®, OSHA, and 70E

- OSHA is the Law
 - All States (and most of the Americas) have adopted the NEC® (NFPA® 70)
 - Mostly an Electrical Install/Engineering Standard is what <u>Must/Shall</u> be Done – Not much on DC, and Telecoms / Electric Utilities mostly "Not Covered"

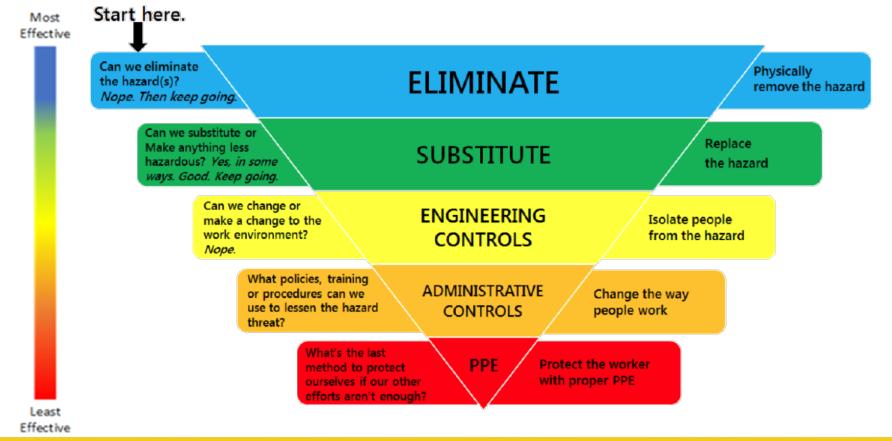
OSHA

- OSHA Electrical Safety Rules that are Law: 29CFR Parts 1910S, 1926K
 - Most Rules based on 1988 Version of NFPA 70E (3rd, but first "complete")

- Much Learned since '88 about Arc-Flash/Blast
- NFPA 70E is How Electrical work Should be Safely Done


Safe Electrical Work Practices

- Electrical Safety Program –Safety Policy and...
- Training
- Determination of Qualified Personnel
- Shut Off Power Whenever Possible
 - Work it "Cold" for the most Electrically Safe work condition
- Risk Assessment (Job Hazard Analysis JHA, Tailgate Meeting)



Hierarchy of Safety (Inverse Pyramid)

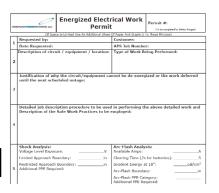
Electrically Safe Work Condition

- Conductor/Part Disconnected from Energized Parts, Locked/Tagged (<u>Minimum Tag</u>), Test to Ensure No/Low Voltage, Ground as Needed
- Four Steps
 - 1. Documentation
 - 2. Disconnect Power Source
 - 3. Lockout/Tagout (LOTO)
 - 4. Verification

Necessary PPE <u>must</u> be Worn Until Proven Electrically Safe

3-Step "Absence of Voltage" Test Method

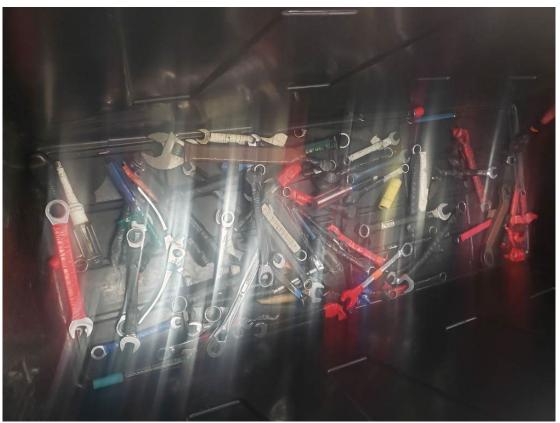
- 1. Verify the Functionality of the Meter by Testing a known Live Voltage
- 2. Test for the Absence of Voltage on the Conductors or Circuit Part that was supposedly Isolated
- 3. Re-Verify the Functionality of the Meter by Testing a known Live Voltage



Battery Work Almost Always Energized

- No Way to Fully Discharge Most Batteries to Eliminate All Voltage – Almost All Work on Most Batteries must be Performed as if Energized Unless "Proven" Not So
 - Some (Definitely Not All) Modern Li-ion Batteries Can Have a Breaker Turned Off so There is no Available "External" Energy; +
 Damaged Li-ion May Be Completely Drained in Saltwater Bath
- Ensure Employees are Trained in the Safe and Proper Work Practices for Work performed on Energized Systems
- Energized Electrical Work Permit Possibly Needed

Insulated Tools


- Insulated Tools are <u>Required</u> Inside the Restricted Boundary
 - They are also Required Inside the Limited Boundary if Accidental Contact with Live Parts is Possible
 - Look for Double Triangle, ASTM F 1505 (or IEC 60900)
 - Voltage Rating is Typically 1000 V
 - Accessories must also be Non-Conductive in Areas Where Insulated Tools are Required

Improperly Insulated Tools

Danger of Uninsulated Tools on Even SELV -48 VDC

Arc-Flash PPE Categories

- Arc Flash Boundary: ≤1.2 cal/cm², 2nd degree burn threshold
 - Minimum Suggested to work on Live Voltages (Even SELV):
 - Natural Fiber (cotton, wool, rayon, flax, silk) Clothing
 - Long sleeves to reach into battery/electrical cabinets
- Arc Flash PPE Category (was HRC) 1:
 - 4 cal/cm², ATPV (Arc Thermal Performance Value)
- Arc Flash PPE Category 2: 8 cal/cm²
 "Informal" PPE Category "2+": 12 cal/cm²
- Arc Flash PPE Category 3: 25 cal/cm²
- Arc Flash PPE Category 4: 40 cal/cm²

AC Arc-Flash Risk Analysis

- Determine Boundaries from NFPA 70E, 130 Tables if No Label
 - Calculated Label is First Choice
 - See Next Slide for Methods of Calculation
 - Table Below Incomplete (Assumes Lower Power Feed Transformers)

nominal Ph-Ph Voltage	Arcing Current	Arc-Flash Boundary	PPE Category	Hazard Identification	ANSI Approved Heading and Symbols
0 – 240 VAC (120, 208, 240)	<25 kA and 0-0.03 sec (2	19"	1	Equipment	5.6 Nominal System Voltage 480V Voltage Cal/cm2 @ 18" (Incident Energy) Nominal System Voltage 480V Voltage Exercised Approach Boundary 42" Restricted Approach Boundary 42" Arc Flash and Shock P8: Arc-Rated: Shirt, Pants, or Coverall, Face Shield, Balaclava (Rating must be greater than or equal to listed Incident Energy) Arc Flash and Shock P8: Lass 00 or Higher Voltage Gloves, Voltage Rated Tools
241 – 600V (480 VAC)	cycles) fault clearing time	36"	2	Identification and LOTO	Other PPE: Hard LockoutLockou

How to Calculate AC Arc Flash

- NFPA 70E Provides "Guidance" and Minimal Calculations
- IEEE 1584 Provides Far More Calculations
- AC Calculations (Max Short Circuit Current) More Difficult Need:
 - Transformer Characteristics (X/R, Impedance)
 - All Motors Connected to Feed Transformer Secondary for SpinDown Short Ckt Currents
 - All Breaker Models Must be Known as well
 - Wire Sizes and Distances More Important if Long Runs
 - Use a Specialized Computer Program (If Inputs Not Right, Answer is Wrong!)
 - SKM, ETAP, Arc Advisor, Kinectrics, ArcWear, Easy Power, Eaton, etc.
 - ArcAD Arc Flash Analytic, ArcPro[™], ArcFlash[™], CYME, etc.
- No Calculations for 120 or 240 V Single or Split Single-Phase
 - Can Guesstimate From 3-Phase 208 or 240 V Calculations

000000

DC Arc-Flash Risk Analysis

- Calculate (see Next Slides) if Possible
 - Or, Determine Boundaries from NFPA 70E Article 130 Tables (see below)

Nominal DC Voltage	Fault Current	Arc-Flash Boundary	Risk Category
0 - 150V	Any	N/A	N/A
	<4 kA	3'	2 - (8 cal/cm ²)
150 - 250V	≥4 kA and <7 kA	4'	2 - (8 cal/cm ²)
	≥7 kA and <15 kA	6'	3 - (25 cal/cm ²)
	<1.5 kA	3'	2 - (8 cal/cm ²)
250 - 600V	≥1.5 kA and <3 kA	4'	2 - (8 cal/cm ²)
230 - 000 v	≥3 kA and <7 kA	6'	3 - (25 cal/cm ²)
	≥7 kA and <10 kA	8'	4 - (40 cal/cm ²)

How to Calculate DC Arc Flash

- NFPA 70E Provides "Guidance" and Minimal Calculations
- IEEE 1584 Provides No Calculations (Yet)
- Simpler than AC, but Still Need:
 - Short Circuit Current Capability of Charger(s)/Rectifier(s)
 - Can be Guesstimate-Calculated if Not Available from Manufacturer
 - Short Circuit Current Rating of Batteries (Always Available from Battery Manufacturer)
 - All Breaker Models Must be Known as well
 - Wire Sizes and Distances More Important if Long Runs
 - Use a Specialized Computer Program (Bad Inputs Yield Poor Outputs)
 - Uses Iterative Stokes/Oppenlander, Paukert, or Ammerman Models
 - Mostly Same Vendors as AC Calculation Programs, but Possibly Separate Module
 - Doan Max Power Transfer Theorem is Simplest and can be Done by Hand
 - Less Accurate than Iterative Models, but Can be Made More Accurate by Adjusting Time (see next slides)

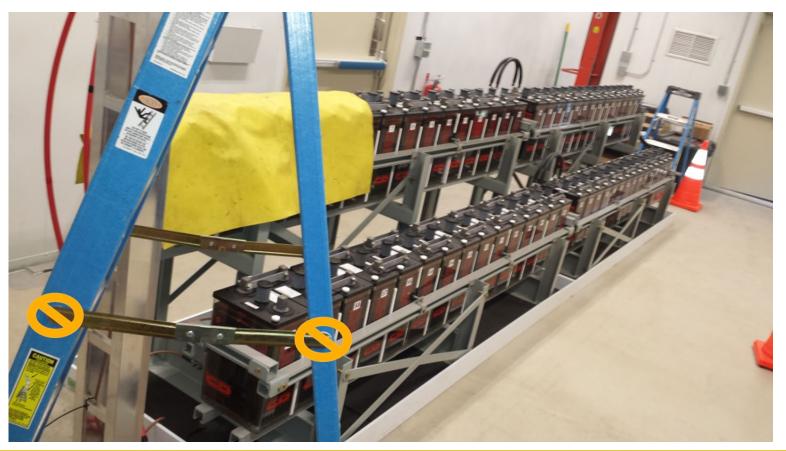
How DC Arc-Flash cal/cm² Calculated per NFPA 70E Max Power, & BPA/HydroQuebec (& Other) Studies/Tests

- Formula from NFPA 70E: $E_i = 0.01 \times V_{nom} \times \frac{I_{sc}}{2} \times \frac{t_{arc}}{d^2}$
 - *d* is usually defined as 18", but in cm (45.72)
 - Based on NFPA 70E, + BPA & Hydro Quebec (and "other") studies/tests, max t_{arc} =
 - 0.025 s for most breakers (unless known otherwise), when applicable
 - 0.0043 x V_{nom}
 - Maximum of 2 seconds
 - » >465 V
 - Simplifying:
 - $E_i (\leq 465 \text{ V}) = 0.0000001029 \times V_{nom}^2 \times I_{sc}$
 - $E_i(> 465 \text{ V}) = 0.000004784 \times V_{nom} \times I_{sc}$

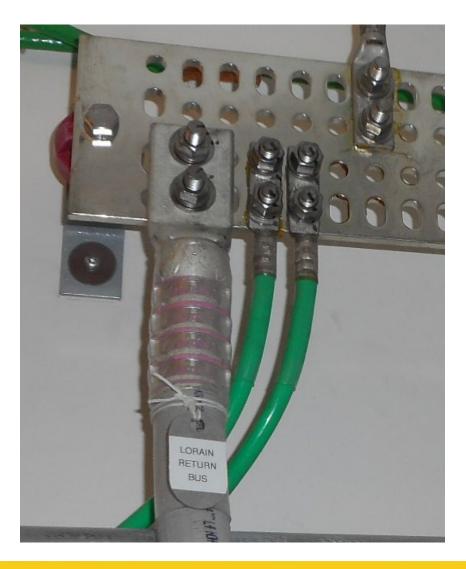
How DC Arc-Flash Boundary Calculated w/NFPA 70E Max Power, and BPA/HydroQuebec Studies

- Algebraically Rework Formula: $d(cm) = \sqrt{\frac{0.01 \times V_{nom} \times I_{sc} \times t_{arc}}{2 \times E_{i-m}}}$
 - The incident Energy (E_{i-m}) to set the arc-flash boundary is 1.2 cal/cm²
 - Based on NFPA 70E, + BPA & Hydro Quebec studies, max t_{arc} =
 - 0.025 s for most breakers (unless known otherwise), when applicable
 - 0.0043 x V_{nom} (Maximum of 2 seconds > 465 V)
 - Arc in a Box Multiplier per NFPA 70E and Associated Studies Data:
 - 1.6 for Panelboards (> 18")
 - Cabinets (e.g., UPS Battery Cabinet): $0.55 \times \ln d$ (> 18 in)
 - Simplifying:
 - $d (in) [\leq 465 \text{ V}] = 0.00167 \times \sqrt{V_{nom}^2 \times I_{sc}} (maximum = 120'')^2$
 - $d (in)[> 465 V] = 0.036 \times \sqrt{V_{nom} \times I_{sc}}$ (maximum = 120")

Limited


Samples From Max Power NFPA 70E Modified for Time Based on Recent Testing

Battery		PPE	-	Arc-in-a-Box Arc-		
Model	VDC	Cat	Flash Boundary	Flash Boundary	Amps	@ 18"
MCTII-4000	2	N/A	1	N/A	26,653	0.001
	48		13			0.6
	2		1		7,407	0.0003
KCR-15 1	120		17			1.1
	236	2	34			4.2
	12		1		4,801	0.01
HR7500ET	120	N/A	14			0.7
	240	1	34	66	4,001	2.8
	480	2+	87	120		11.0
	2		1	NI / A	11,131	0.004
AVR125-33	120	N/A	21			1.6
	240	2	42	N/A	11,131	6.6
	480	4	83			25.6


Eliminate the Hazard and Don't OverSuit

Grounded System/Conductor

Determining if your System is Grounded or Ungrounded

- Telecom 24 and 48 V systems should be grounded
- Electric Utility / Industrial 125/250 VDC and UPS DC Typically Ungrounded
 - Might be a center-tap high resistance ground as part of ground fault detection circuit
 - Battery Monitoring Circuits May Introduce Unintentional Low Resistance Grounds
 - How to Test to Ensure You are "Ungrounded" or "Grounded" for Safety PPE Purposes
 - Measure <u>DC</u> Voltage Between Both Polarities & a Grounded Point (e.g., Rack)
 - For Grounded system, Voltage from one polarity to ground typically close to nominal system voltage,
 and voltage of opposite polarity to ground near 0
 - For Ungrounded, Voltage of either pole to ground shouldn't be near 0, but DMM might "drain" towards
 0 as surface charge drains via meter impedance
 - » Might See Half Voltage Due to Ground Fault Detection Circuit?

Arc-Flash Ratings of Gloves

- Rubber Insulating Gloves with Leather Protectors Satisfy the Majority of Arc-Flash Protection Requirements, and Separate Arc-Rated Gloves are Not Required
 - Most Leather Protectors (and almost all heavy-duty dry leather gloves) are Rated at 10-12 cal/cm²
 - Most of Our Arc-Flash Suits are Rated at 12 cal/cm²
 - Voltage-Rated Rubber Gloves are Arc-Flash Rated/Tested to at least 17 cal/cm²

"Testing"/Replace Electrical Insulating PPE

Electrical Insulating "Tool"	Manufacturing Standard	Testing/Replacement Intervals
Blankets/ Electro-Shield	ASTM F479	 12 months for natural rubber 18 months for synthetic rubber (Type II) replace (smaller pieces), or send out for testing
Rubber Gloves	ASTM F476	6 months (15 months for telecom Type II [synthetic rubber]) send out for electrical testing {air test before each trip/use}

Contact Info

- Curtis Ashton
 - (720) 845-0846
 - curtisashton@ampowersys.com

