
Best Practices for Outdoor Grounding & Bonding Terminations

Connector Technology

- Electrical Connector
 - In their simplest form, join two or more conductors in a continuous, electrically conductive path
 - **Grounding Connection Types**

Compression

Mechanical

<u>Exothermic</u>

Outdoor Connection Longevity <u>Connector Selection</u>

- Selecting a connector that is design to be used for the application.
 - Proper wire size / wire range & designed to connect to the surface you are bonding
 - Proper connector materials and plating (high copper content, tin plating, SS or silicon bronze hardware)

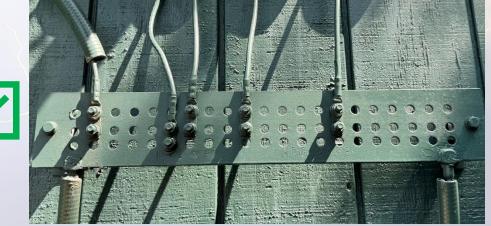
Installation

- Install per the manufacturer's recommendations
 - Compression Tool, Die, No. of crimps
 - Mechanical Proper Installation Torque
 - Exothermic Cleaning / drying exothermic mold & conductors, proper shot and conductor size
- Minimize corrosion opportunity's that can be controlled
 - Cleaning conductor and connection surface
 - Avoid dissimilar metals when possible
 - Use proper oxide inhibitor on conductor and mounting surface
 - Use corrosion resistant mounting hardware (SS or Silicone bronze)

Bare copper connector designed for flat surface on a round steel pipe,

Fully tin-plated connector designed to be used on round pipe

Preferred Connection Methods (Telecom industry)


Compression / 2 – hole long barrel lugs

- Irreversible
- Inability to rotate which can cause hardware to loosen
- Larger contact surface when compared to a single hole lug
- Able to utilize more crimps (Lower resistance & higher mechanical strength)

Exothermic

- Molecular bond between the two conductors
- Strong, low resistance connections when done properly
- Highly corrosion resistant as there is no ability for water or air to enter the connection

Grounding Electrodes

Ground Rods

Ground Plates

Ground Enhancement Material (GEM)

Oxide Inhibitors

Overview and Benefits

- Oxide Inhibitors typically utilize an oil base, a thickener and suspended additives or particles ("grit")
- Seal the connection from air and moisture to prevent oxidation and improve the service life of the connection
- May aid in penetrating an existing oxide layer
- Acts as a lubricant for inserting conductor into a connector or on threads to prevent galling or seizing

Common Types of Oxide Inhibitors

- Petroleum or synthetic base
- "Non-grit" or "Grit" versions
- "Grit" typically consists of suspended Zinc, Copper or Aluminum Oxide particles

Considerations

- Connector, conductor and mountain surface materials
- Operating temperature range (not a major issue with grounding connections)
- Compatibility with conductor insulation or PPE (gloves) being used during installation.

Oxide Inhibitors (Cont.)

Reference Studies

Summary

Lug Selection Considerations

Inspection Window

- Allows for visual inspection of the wire ensuring full wire insertion and no visible strand damage
 - Creates an area for **moisture and other contaminants** to enter the connection

No Inspection Window

- Connection is less vulnerable to moisture and contamination
- No ability to visually inspect wire before or after crimping

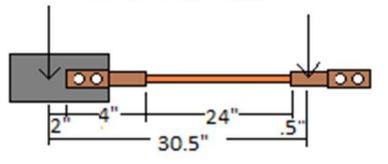
Two - Hole

- Lug is unable to rotate preventing hardware to loosen
- ß
- Large contact surface with additional clamping force

Single - Hole

- \bigcirc Can fit in a more confined space
- Potential for hardware to loosen over time from lug moving

Connector Comparison – Experimental Data


ASTM B117 – Salt Spray (Fog) 1008 - hour exposure test

- 6 sample groups were tested to compare plating, mounting surface and the use of oxide inhibitor
- Resistance measurements were taken 6 separate times through the 1008 hours

Connector	Platting	Mounting Surface	Oxide Inhibitor
YGHA262NTN	Tin	Steel Plate	N/A
YGHA262NTN	Tin	Copper Plate	N/A
YGHA262N	N/A	Steel Plate	N/A
YGHA262N	N/A	Copper Plate	N/A
YGHA26-2NTN	Tin	Steel Plate	Penetrox- E
YGHA26-2NTN	Tin	Copper Plate	Penetrox- E

Sample Groups

Resistance Readings

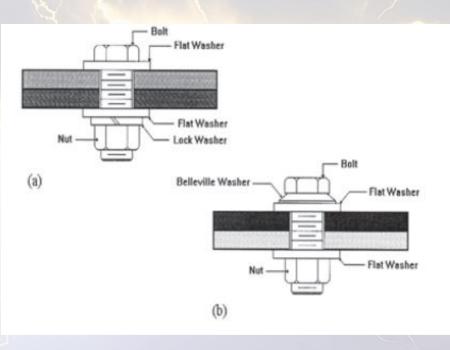
Test Setup

Connector Comparison – Experimental Data (Cont.)

• All measurements are given in micro-ohms corrected to 20 °C

	YGHA Lug to Steel Plate									
Connector	Mounting Surface	Oxide Inhibitor	Initial Reading	168 Hours	336 Hours	504 Hours	672 Hours	840 Hours	1008 Hours	Max Resistance Change Measured
YGHA262NTN		N1/A	72.6	85.5	88.5	95.8	98.4	107.8	93.3	35.2
YGHA262N	Steel Plate N/A Penetrox- E	IN/A	101.5	109.1	117.0	125.2	135.8	154.2	125.4	52.7
YGHA26-2NTN		Penetrox- E	112.0	111.5	112.4	111.3	110.0	110.3	110.3	-1.7

	YGHA Lug to Copper Plate									
Connector	Mounting Surface	Oxide Inhihitor	Initial Reading	168 Hours	336 Hours	504 Hours	672 Hours	840 Hours	1008 Hours	Max Resistance Change Measured
YGHA262NTN			10.1	20.4	25.6	27.5	31.1	42.3	28.1	32.2
YGHA262N	Copper Plate	N/A	25.8	28.4	28.7	36.6	38.6	41.8	38.4	16.0
YGHA26-2NTN		Penetrox- E	83.4	83.3	82.5	82.1	82.0	82.2	82.2	-1.3


Summary of Findings

- When connecting to steel, tin plating provided much better connection stability throughout the test
- Using an oxide inhibitor whether connecting to steel or copper greatly increased connection stability

Mounting Hardware Considerations - Material

Bolted Joints Table 3.1-1 Recommended Hardware Materials (Quantity per Bolt)								
Copper to	SB	SB	SB	SB	NR	(-)		
Copper	SS	SS	SS	SS	NR	(a)		
Copper to	SB*	SB*	SB*	NR	SS	(b)		
Aluminum	SS	SS	SS	NR	SS	(b)		
Aluminum to	AL	AL	AL	AL	NR	(a)		
Aluminum	SS	SS	SS	NR	SS**	(b)		
a .	SB	SB	SB	SB	SS**	(a) or (b)		
Copper to Steel	SS	SS	SS	SS	NR			
Steel	GS	GS	GS	GS	NR	(a)		
A	SB*	SB*	SB*	NR	SS			
Aluminum to Steel	SS	SS	SS	NR	SS	(b)		
to steel	GS	GS	GS	NR	SS]		
Key:	NR Not Required GS Galvanized Steel SB Silicon Bronze * Tin Plated AL Aluminum ** Alternate recommendation in place of lock washer SS Stainless Steel ** Alternate recommendation in place of lock washer							

- For outdoor connections stainless steel or silicon bronze hardware should be used
- UL 467 requires stainless steel or silicon bronze hardware for Direct Burial Rating

Mounting Hardware Considerations - Torque

Properly Torqued Hardware

- Provides adequate clamping force for a low resistance, stable connection
- Creates a seal between the connector and mounting surface to help prevent entry of moisture and water

Industry Torque Recommendations

	Recommended Tigtening Torq Table 3.1-2	lne
Bolt Size*	DURIUM™ (silicon bronze) Stainless Steel Galvanized Steel (Ib-in)	Aluminum (lb-in)
1/4 - 20	80	—
5/16 - 18	180	—
3/8 - 16	240	168
1/2 - 13	480	300
5/8 - 11	660	480
3/4 - 10	960	650
* Thread classes are UNC	-2A (external) and UNC-2B (interna	l)

Screw	or bolt size	Tightening torque				
Metric	SAE	N-m	(lbf·ft)			
-	No. 8 or smaller	2	(1.5)			
-	No.10	3	(2.0)			
M6	1/4	8	(6)			
-	5/16	15	(11)			
M10	3/8	26	(19)			
-	7/16	41	(30)			
M12	1/2	54	(40)			
-	9/16, 5/8 or larger	75	(55)			

UL 486A-B (Table 24 – Tightening Torque for Connecting Hardware)

NEMA – CC1 (Nominal Torque Values Table 4-4)

Dissimilar Metals Considerations – Galvanic Compatibility

	Metallurgy	Index (\
	Gold, solid and plated, Gold-platinum alloy	0.00
	Rhodium plated on silver-plated copper	0.05
	Silver, solid or plated; monel metal. High nickel-copper alloys	0.15
	Nickel, solid or plated, titanium an s alloys, Monel	0.30
	Copper, solid or plated; low brasses or bronzes; silver solder; German silvery high copper-nickel alloys; nickel-chromium alloys	0.35
	Brass and bronzes	0.40
	High brasses and bronzes	0.45
	18% chromium type corrosion-resistant steels	0.50
	Chromium plated; tin plated; 12% chromium type corrosion-resistant steels	0.60
	Tin-plate; tin-lead solder	0.65
	Lead, solid or plated; high lead alloys	0.70
	Aluminum, wrought alloys of the 2000 Series	0.75
	Iron, wrought, gray or malleable, plain carbon and low alloy steels	0.85
	Aluminum, wrought alloys other than 2000 Series aluminum, cast alloys of the silicon type	0.90
	Aluminum, cast alloys other than silicon type, cadmium, plated and chromate	0.95
	Hot-dip-zinc plate;galvanized steel	1.20
	Zinc, wrought; zinc-base die-casting alloys; zinc plated	1.25

For *harsh environments*, such as outdoors, high humidity, and salt environments fall into this category. humidity-controlled there should be not more than 0.15 V difference in the "Anodic Index". For example; gold -silver would have a difference of 0.15V being acceptable.

For **normal environments**, such as storage in warehouses or non-temperature and humidity-controlled environments. Typically, there should not be more than 0.25 V difference in the "Anodic Index".

For *controlled environments*, such that are temperature and humidity controlled, 0.50 V can be tolerated. Caution should be maintained when deciding for this application as humidity and temperature do vary from regions. *This serves as a basic qualitative guide only.*

Environmental Considerations

Temperature and Weather

Corrosive Environments

