Telecom/ICT Backup Power – Where is it Going?

Curtis Ashton Training Director American Power Systems LLC (a DC services division of East Penn / Deka Batteries

What We Will Cover (Briefly)

- > Are 3-8 hr + Backups Going to Be Less?
 - > Less or More Reliable UPS?
 - > and UPS Backup Times
- > Distributed vs Centralized Power
- > How to Meet Long Duration Backup Mandates
 > Is Li-ion Getting Safer?
- > Additional Battery Chemistries Available for Telecom

Historical 3-8 hr Battery Backup of Telecom COs/RTs and 5-15 Minutes for IT DataCenters

- 3-4 hrs for COs with Permanent Auto-Start Auto-Transfer Engine-Alternators Allowed Time to Dispatch and Fix Most Engine Problems
 - 8 hrs for Sites w/o Permanent Engine Allowed Extra Time to Retrieve, Tow, & Hook Up Portable Genset
 - these Long Backup Times Possible Because Historic Telecom Heat Loads only 7-35 W/ft²
 - Early IT/DataCenter Backup 15 Mins to Allow Orderly Computing Shutdown w/o Loss of Data
 - Heat Loads High Enough (80-200 W/ft2) that Longer Backup Times Do No Good Because Computing Equipment Will OverHeat after 30-45 Minutes Depending on Heat Load Density
 - Data Loss on Shutdown No Longer an Issue, so 5 Min Backups for Centralized UPS More Common
 - Typically 1-2 Mins to Start All Paralleled Engines and Transfer Loads
 - Distributed UPS Typically 45-90 secs Due to New Power Designs (Fewer Engines to Parallel per "Module")
 - Engine Redundancy (N+1) COs Probably Need This for Reliability if Desire is to Reduce 3-8 hr Backup Time

Reliability of UPS vs DC Plant

- According to Intelec (IEEE PELS) Whitepaper from 1998, Single UPS (1N Architecture) 27x Less Reliable Than Typical 48VDC Plant
 - Most DataCenters Have Adopted Much More Reliable Architectures Nowadays
 - Tier IV DataCenters Have Redundant AC From 2 Different Substations
 - Willing to Operate at Lower UPS Conversion Efficiency in VFI (True Double-Conversion) Mode
 - While Single Flooded String More Reliable than Single VRLA or Li-ion String, Multiple Parallel Strings (that most now Use in Centralized UPS) of the Latter 2 Types are 4x+ More Reliable Than 1 Flooded
 - A/B Powering of Individual Shelves Borrowed from Telecom (They Call it "Dual Cording")
 - Centralized UPS Redundancy
 - 2N or "Catcher" (and/or N+1) Systems
 - Distributed UPS Reduce Single Points of Failure and Decrease Conversion Efficiency Losses
 - Internal Redundancy in Some UPS
 - Transfer to Shared Computing
 - Other Racks or Other DataCenters

Modern IT UPS Reliability Schemes

Dual Conversion (Less Efficient, but Far More Reliable)

Internal Redundancy in All UPS Components

2N Architecture

"Catcher" System

DC Architectures (230 or 380) For Energy Savings

Options to Meet Long Duration Backup Mandates

- More Batteries
 - Lead-Acid Not the Most Space-Efficient
 - Li-ion Potential Fire Code Spacing Issue > 50 kWh
 - And is a Relatively High Fire Risk
 - » Stick with UL 1973 LFP
- On-Site Power Generation w/ Ride-Thru Batteries
 - Engine-Alternators
 - Potential Issues with Diesel Emissions and Noise
 - Natural Gas or Propane?
 - Fuel Cells
 - Hydrogen Storage and Transport Issues
 - Methanol or Propane (LPG) Reformers
 - Fuel Cells Usually Take More Space than ICE and Cost at Least 2-10x

	Backup type	Wh /kg	Wh /L	float yrs	High° effect	Low ° effect	Maint- enance	thermal run/ walkaway	\$/ kWh
I ANON . IN	Li-ion LFP	95	100	40.45	-45%	heater?	2	< most Li	400
	Li-ion LMO	90	120	10-15		can't do	3 yrs		550
	Li-ion LTO	80		20	-35%		5 yrs	not yet	600
	Li-ion NCA	130	120	15	-45%	can't do	4 yrs	Vac	700
	Li-ion NMC	170		10-15			3 yrs	Tes	550
	VRLA blocs	40	00	2-11	5	0%	6-12 mo	old/short	200
	VRLA 2V	30	90	5-17	-50 /8		0-12 110	OIQ/SHOIT	300
	Ni-Cd	55	80	25	-20%		18-36 mo		625
	NiZn	70	115	13	-30%		3 yrs		650
	ZnMnO ₂	50	80	10	-45%	-50%	2½ yrs	N/A	300
	Ni-H ₂	30	35	25	-20%	0%	6 yrs		650

Example Technology Comparison for 72 h Backup Assumptions and Notes

- Outdoor Cabinet to Power
 - 750 W Fairly Constant Power Load @ Nominal -48 VDC
 - Fresno Climate Assumed for Sizing and Lifetime of Batteries
 - LFP Only Technology Requiring Fire Code Spacing > 50 kWh
 - 20 yr Lifespan, assuming post WWII US avg Inflation Rate of 3.74% and ROI of 10%
 - Up Front Costs Include Costs of Cabinet(s) and Install
 - Assumed Height Limits of 72" in ROW
 - 3' Minimum Working Clearances Factored into Space
 - 10' Offset Required for LPG
 - Presently Available NiZn and ZnMnO₂ Products Float Too High (> 60 V)
 - LTO Can Float Correctly, but Presently Available Products Only 35 h @ 750 W
 - Ni-H₂ Could Float Correctly if Electronics Were Designed for it, but Not Yet

Example Technology Comparison 72 h Backup Table

Technology	Sizing	init\$	avgLife	Replace\$	Space	Weight	M\$/yr	NPV
VRLA monoblocs	9, 200Ah strings	\$48,000	7 yrs	\$21,000	100 ft ²	7,800lbs	\$ 600	\$77,000
VRLA 2V	2, 900Ah strings	\$56 <i>,</i> 000	13 yrs	\$30,000	105 ft ²	8,800lbs	\$ 300	\$73,000
LFP	8, 200Ah mods	\$59 <i>,</i> 000	12 yrs	\$32 <i>,</i> 000	155 ft ²	3,400lbs	\$ 100	\$76,000
Ni-Cd (TelX)	9, 172Ah strings	\$89,000	25 yrs	\$ 0	100 ft ²	5,200lbs	\$ 150	\$91,000
LPG DC Genset	6kW; 2 100lb tanks	\$13,000	13 yrs	\$ 9,000	170 ft ²	400lbs	\$1,800	\$39,000
methanol Fuel Cell	2, 500W; 40L	\$89,000	20 yrs	\$ 0	75 ft ₂	1,200lbs	\$ 900	\$99,000

LPG DC Output Genset

2V VRLA Solution Example

Global Grid-Scale BESS Deployment and Failure Statistics

Is Li-ion Getting Safer?

- LTO is Present Safest Li-Based Chemistry
 - Least Energy Dense & aMore Expensive Li Chemistry
 - Limited Manufacturer's and Products
- LFP is 2nd Safest Li-Based Chemistry
 - Medium Energy Density
 - About Half as Likely to Go Into Thermal Runaway as NCA, LMO, and NMC; and For UL 1973 Listed Modules About ½ as Likely to Have Propagating Thermal Runaway
- Long Term Safety Solution is Solid State (Polymer or Ceramic/Glass Electrolyte) Li-ion
 - Beware of Li-Metal Solid State Solutions (Remember Avestor!)

ources: (1) EPRI Failure Incident Database, (2) Wood Mackenzie. Data as of 12/31/23.

ANTERON

FUE

How to Contact Me

- curtisashton@ampowersys.com
- (720) 845-0846

